CMPE 300 ANALYSIS OF ALGORITHMS
 MIDTERM ANSWERS

1.

a) function Compute (n)
sum $=0$
if $(n=0)$ or $(n=1)$ then
return 1
else
for $\mathrm{i}=1$ to $\mathrm{n}-1$ do
sum $=$ sum + Compute (i) * Compute $(\mathrm{i}-1)+1$
endfor
sum $=$ sum + Compute $(n-1)$
return sum
endif
end
Solution of $T(n)$:
$T(n)=T(0)+2[T(1)+T(2)+\cdots+T(n-2)+T(n-1)]+(n-1)$
So,
$T(n-1)=T(0)+2[T(1)+T(2)+\cdots+T(n-3)+T(n-2)]+(n-2)$
Subtracting the second one from the first, we obtain
$T(n)=3 T(n-1)+1$
Solving by backward substitution,

$$
T(n)=3^{n-1}+\sum_{l=0}^{n-2} 3^{l}=3^{n-1}+\left(\frac{3^{n-1}-1}{2}\right) \in \theta\left(3^{n}\right)
$$

b) function Compute (n)

$$
\mathrm{T}[0]=1
$$

$$
\mathrm{T}[1]=1
$$

for $\mathrm{i}=2$ to n do

$$
\mathrm{T}[\mathrm{i}]=0
$$

$$
\text { for } \mathrm{j}=1 \text { to } \mathrm{i}-1 \text { do }
$$

$$
\mathrm{T}[\mathrm{i}]=\mathrm{T}[\mathrm{i}]+\mathrm{T}[\mathrm{j}] * \mathrm{~T}[\mathrm{j}-1]+1
$$

endfor

$$
\mathrm{T}[\mathrm{i}]=\mathrm{T}[\mathrm{i}]+\mathrm{T}[\mathrm{i}-1]
$$

endif
return T[n]
end

$$
\begin{aligned}
& T(n)=\sum_{i=2}^{n}\left[\left(\sum_{j=1}^{l-1} 1\right)+1\right] \\
& T(n)=\sum_{i=2}^{n} i=\frac{n(n-1)}{2}-1 \in \theta\left(n^{2}\right)
\end{aligned}
$$

c) function Compute (n)

```
        \(\mathrm{T}[0]=1\)
        \(\mathrm{T}[1]=1\)
        \(\mathrm{T}[2]=\mathrm{T}[0] * \mathrm{~T}[1]+2\)
        for \(\mathrm{i}=3\) to n do
            \(\mathrm{T}[\mathrm{i}]=\mathrm{T}[\mathrm{i}-1]+(\mathrm{T}[\mathrm{i}-1] * \mathrm{~T}[\mathrm{i}-2]+1)-\mathrm{T}[\mathrm{i}-2]+\mathrm{T}[\mathrm{i}-1]\)
        endfor
    return \(\mathrm{T}[\mathrm{n}]\)
end
```

$T(n)=\sum_{i=3}^{n} 1 \in \theta(n)$
2. Theorem: Given integers $\mathrm{n}, \mathrm{k}, \mathrm{k} \mathrm{n}$, suppose $\mathrm{L}[1: \mathrm{n}]$ is a list such that every element in the list is no more than k positions from its stable final position in the sorted list L . Then insertion sort performs at most $2 \mathrm{k}(\mathrm{n}-1)$ comparisons when sorting $\mathrm{L}[1: \mathrm{n}]$.

First, we will show that, if each element in the list is no more than k positions from its stable final position, then for each $\mathrm{i} \in\{2, \ldots, \mathrm{n}\}$, there are at most $2 \mathrm{k}-1$ list elements $\mathrm{L}[\mathrm{j}]$ such that $\mathrm{j}<\mathrm{i}$ and $\mathrm{L}[\mathrm{i}]<\mathrm{L}[\mathrm{j}]$.

Assume to the contrary that there are at least 2 k list elements such that $\mathrm{j}<\mathrm{i}$ and $\mathrm{L}[\mathrm{i}]<\mathrm{L}[\mathrm{j}]$. Then there must exist a list element $\mathrm{L}\left[\mathrm{j}_{0}\right]$ that is strictly greater than $\mathrm{L}[\mathrm{i}]$, such that $\mathrm{j}_{0} \dot{\mathrm{~s}}-2 \mathrm{k}$. Let i^{\prime} and $\mathrm{j}_{0}{ }^{\prime}$ denote the stable final positions of $\mathrm{L}[\mathrm{i}]$ and $\mathrm{L}\left[\mathrm{j}_{0}\right]$, respectively. By hypothesis, every element in the list $\mathrm{L}[1: \mathrm{n}]$ is no more than k positions from its stable final position.
 a contradiction.

From the conclusion that there are at most 2 k - 1 list elements $\mathrm{L}[\mathrm{j}]$ such that $\mathrm{j}<\mathrm{i}$ and $\mathrm{L}[\mathrm{i}]<\mathrm{L}[\mathrm{j}]$ and the fact that the algorithm iterates $\mathrm{n}-1$ times, the theorem follows.
3.

| a) | Visit | Unvisited neighbors |
| :--- | :--- | :--- | Backtrack

3 (returned)	7	
7	---	to 3
3 (returned)	--	to 6
6 (returned)	---	to 1
1 (returned)	--	to 5
5 (returned)	--	to 1
1 (returned)	---	

So, order of visits: $1,5,6,3,4,8,9,2,10,7$
b) Visit Unvisited neighbors Enqueue

5,6,7,8,9 5,6,7,8,9
5 (dequeue) ---
6 (dequeue) 3,4
3,4
7 (dequeue) ---
8 (dequeue) ---
9 (dequeue) 2
2
3 (dequeue) ---
4 (dequeue) ---
2 (dequeue) 10 10

10 (dequeue) ---

So, order of visits: $1,5,6,7,8,9,3,4,2,10$
4. We can view the algorithm as having two steps. Let T_{1} denote the number of basic operations in the loop and T_{2} the number of basic operations in the recursive calls. Then
$\mathrm{A}(\mathrm{n})=\mathrm{E}[\mathrm{T}]=\mathrm{E}\left[\mathrm{T}_{1}\right]+\mathrm{E}\left[\mathrm{T}_{2}\right]$

Similarly, we can divide the work inside the loop into two parts: Let $\mathrm{T}_{1,1}$ be the number of times first basic operation is executed and $\mathrm{T}_{1,2}$ the number of times second basic operation is executed. Then
$\mathrm{E}\left[\mathrm{T}_{1}\right]=\mathrm{E}\left[\mathrm{T}_{1,1}\right]+\mathrm{E}\left[\mathrm{T}_{1,2}\right]=(\mathrm{n}-1)+\mathrm{E}\left[\mathrm{T}_{1,2}\right]$

We can assume that it is equally likely that L[low] can be any one of the integers $1, . ., \mathrm{n}$. So, the second $\operatorname{print}(.$.$) statement will be executed (\mathrm{n}-1$) times with probability $1 / n$, will be executed ($\mathrm{n}-2$) times with probability $1 / \mathrm{n}, \ldots$, will be executed 0 times with probability $1 / n$. Thus
$\mathrm{E}\left[\mathrm{T}_{1,2}\right]=\sum_{l=0}^{n-1} \dot{l} * \frac{1}{n}=\frac{1}{n} * \frac{n(n-1)}{2}=\frac{n-1}{2}$
Then, $\mathrm{E}\left[\mathrm{T}_{1}\right]=\frac{3(n-1)}{2}$. Then, assuming that the $\operatorname{random}(.$.$) command returns any number$ between 1 and n with equal probability,
$A(n)=\frac{3(n-1)}{2}+\frac{1}{n} \sum_{t=1}^{n} A(i)+A(n-i+1), \mathrm{A}(1)=0$
$A(n)=\frac{3(n-1)}{2}+\frac{2}{n}[A(1)+\cdots+A(n)]$
Multiply with n :
$n(n)=\frac{3 n(n-1)}{2}+2[A(1)+\cdots+A(n)]$
Replace n with $\mathrm{n}-1$:
$(n-1) A(n-1)=\frac{3(n-1)(n-2)}{2}+2[A(1)+\cdots+A(n-1)]$
Subtract the second one from the first:
$n(n)-(n-1) A(n-1)=\frac{6(n-1)}{2}+2 A(n)$. Then
$(n-2) A(n)=(n-1) A(n-1)+\frac{6(n-1)}{2}$.
Divide both sides to ($\mathrm{n}-1$) ($\mathrm{n}-2$):
$\frac{A(n)}{n-1}=\frac{A(n-1)}{n-2}+\frac{6}{2(n-2)}$. Let $y(n)=\frac{A(n)}{n-1}$. Then
$y(n)=y(n-1)+\frac{6}{2(n-2)}, y(1)=0$
When we solve $y(n)$ with backward substitution, we will obtain
$y(n)=3 \sum_{l=1}^{n-2} \frac{1}{l} \cong H(n)$. Thus,
$A(n) \cong(n-1) H(n) \in \theta(n \quad)$.

