
CMPE 300  ANALYSIS OF ALGORITHMS
MIDTERM ANSWERS

1.
a) function Compute (n)

sum = 0
if (n=0) or (n=1) then

return 1
else

for i=1 to n-1 do
sum = sum + Compute (i) * Compute (i-1) + 1

endfor
sum = sum + Compute (n-1)
return sum

endif
end

Solution of T(n):( ) = (0) + 2[ (1) + (2) + ⋯+ ( − 2) + ( − 1)] + ( − 1)
So,( − 1) = (0) + 2[ (1) + (2) + ⋯+ ( − 3) + ( − 2)] + ( − 2)
Subtracting the second one from the first, we obtain( ) = 3 ( − 1) + 1
Solving by backward substitution,( ) = 3 + ∑ 3 = 3 + ∈ (3 )

b) function Compute (n)
T[0] = 1
T[1] = 1
for i=2 to n do

T[i] = 0
for j=1 to i-1 do

T[i] = T[i] + T[j] * T[j-1] + 1
endfor
T[i] = T[i] + T[i-1]

endif
return T[n]

end

( ) = 1 + 1
( ) = = ( − 1)2 − 1 ∈ ( )



c) function Compute (n)
T[0] = 1
T[1] = 1
T[2] = T[0] * T[1] + 2
for i=3 to n do

T[i] = T[i-1] + (T[i-1] * T[i-2] + 1) – T[i-2] + T[i-1]
endfor
return T[n]

end

( ) = 1 ∈ ( )
2. Theorem: Given integers n, k, k≤n, suppose L[1:n] is a list such that every element in the

list is no more than k positions from its stable final position in the sorted list L. Then
insertion sort performs at most 2k(n-1) comparisons when sorting L[1:n].

First, we will show that, if each element in the list is no more than k positions from its
stable final position, then for each i{2,...,n}, there are at most 2k-1 list elements L[j]
such that j<i and L[i]<L[j].

Assume to the contrary that there are at least 2k list elements such that j<i and L[i]<L[j].
Then there must exist a list element L[j0] that is strictly greater than L[i], such that j0≤i-2k.
Let i′ and j0′ denote the stable final positions of L[i] and L[j0], respectively. By hypothesis,
every element in the list L[1:n] is no more than k positions from its stable final position.
In particular, j0′≤j0+k≤(i-2k)+k=i-k, and i′≥i-k. Hence, j0′≤i′, which implies that L[j0]≤L[i],
a contradiction.

From the conclusion that there are at most 2k-1 list elements L[j] such that j<i and
L[i]<L[j] and the fact that the algorithm iterates n-1 times, the theorem follows.

3.
a) Visit Unvisited neighbors Backtrack

1 5,6,7,8,9
5 --- to 1
1 (returned) 6,7,8,9
6 3,4,8
3 4,7
4 8
8 9
9 2
2 10
10 --- to 2
2 (returned) --- to 9
9 (returned) --- to 8
8 (returned) --- to 4
4 (returned) --- to 3



3 (returned) 7
7 --- to 3
3 (returned) --- to 6
6 (returned) --- to 1
1 (returned) --- to 5
5 (returned) --- to 1
1 (returned) ---

So, order of visits: 1,5,6,3,4,8,9,2,10,7

b) Visit Unvisited neighbors Enqueue
1 5,6,7,8,9
5,6,7,8,9 5,6,7,8,9
5 (dequeue) ---
6 (dequeue) 3,4 3,4
7 (dequeue) ---
8 (dequeue) ---
9 (dequeue) 2 2
3 (dequeue) ---
4 (dequeue) ---
2 (dequeue) 10 10
10 (dequeue) ---

So, order of visits: 1,5,6,7,8,9,3,4,2,10

4. We can view the algorithm as having two steps. LetT1 denote the number of basic
operations in the loop and T2 the number of basic operations in the recursive calls. Then

A(n) = E[T] = E[T1]+E[T2]

Similarly, we can divide the work inside the loop into two parts: Let T1,1 be the number of
times first basic operation is executed and T1,2 the number of times second basic operation
is executed. Then

E[T1] = E[T1,1] +E[T1,2] = (n-1) + E[T1,2]

We can assume that it is equally likely that L[low] can be any one of the integers 1,..,n.
So, the second print(..) statement will be executed (n-1) times with probability 1/n, will be
executed (n-2) times with probability 1/n, ..., will be executed 0 times with probability
1/n. Thus

E[T1,2] = ∑ ∗ = ∗ ( ) =
Then, E[T1] =

( ). Then, assuming that the random(..) command returns any number
between 1 and n with equal probability,( ) = ( )+ ∑ ( ) + ( − + 1) ,  A(1)=0



( ) = 3( − 1)2 + 2 [ (1) + ⋯+ ( )]
Multiply with n:

( ) = 3 ( − 1)2 + 2[ (1) +⋯+ ( )]
Replace n with n-1:

( − 1) ( − 1) = 3( − 1)( − 2)2 + 2[ (1) + ⋯+ ( − 1)]
Subtract the second one from the first:( ) − ( − 1) ( − 1) = ( )+ 2 ( ). Then( − 2) ( ) = ( − 1) ( − 1) + ( ).
Divide both sides to (n-1)(n-2):

( ) = ( )+ ( ). Let ( ) = ( ). Then

( ) = ( − 1) + ( ) ,  y(1)=0

When we solve y(n) with backward substitution, we will obtain( ) = 3∑ ≅ ( ) . Thus,( ) ≅ ( − 1) ( ) ∈ ( ) .


