
Thermodynamics of Computation and Information Distance

Charles H. Bennett” Pkler G&cst Ming Lit

Paul M.B. VitAnyi$ Wojciech H. Zurekq

Abstract

Intuitively, the minimal information distance between z

and g is the length of the shortest program for a univer-

sal computer to transform z into v and y into z. This

measure will be shown to be, up to a logarithmic addi-

tive term, equal to the maximum of the conditional Kol-

mogorov complexities El(z, y) = max{~(ylz), K(zly)}.

Any reasonable distance to measure similarity of pic-

tures should be an effectively approximable, symmetric,

positive function of z and y satisfying a reasonable nor-

malization condition and obeying the triangle inequal-

ity. It turns out that El is minimal up to an additive

constant among all such dist antes. Hence it is a univer-

sal ‘picture dist ante’, which accounts for any effective

similarity between pictures.

A third information distance, based on the idea

that one should aim for dissipationless computations,

and hence for reversible ones, is given by the length

Ez(z, y) = IOl(ylz) = Kl?(zly) of the shortest re-

versible program that transforms z into y and y into

x on a universal reversible computer. It is shown that

also EZ = El, up to a logarithmic additive term. It is re-

markable that three so differently motivated definitions

turn out to define one and the same notion.

Another information distance, E3, is obtained by

minimizing the total amount of information flowing in

and out during a reversible computation in which the

program is not retained, in other words the number

of extra bits (apart from z) that must be irreversibly

supplied at the beginning, plus the number of garbage

bits (apart from y) that must be irreversibly erased

at the end of the computation to obtain a ‘clean’ y.

This distance is within a logarithmic additive term of

the sum of the conditional complexities, .?73(z, y) =

K(y[z) + K(o\y).

Finally, using the physical theory of reversible com-

putation, the simple difference K(z) – K(y) is shown to

be an appropriate (universal, antisymmetric, and tran-

sitive) measure of the amount of thermodynamic work

required to transform string a into string y by the most

efficient process,

*Address: T.J. Watson IBM Research Center, Yorktown 1 Introduction
Heights, NY 10598, USA. Email: bennetc@watson. ibm.

corn.

t Comp. Sci. Dept., Boston University, Boston, MA 02215.

Email: gacscs.bu.edu Part of this research was done during

the author’s stay at IBM Watson Research Center. Par-

tially supported by NSF grant CCR-9002614, and by NWO

through NFI Project ALADDIN under Contract number NF

62-376 and Scientific Visitor Award B 62-394.

$Partially supported by NSERC Operating grant OGP-

046506. Address: Computer Science Dept, University of

Waterloo, Waterloo, Ontario, N2L 3G1 Canada. Email:

mli@math.uwaterloo .ca.
3parti~Y supported by NSERC International %ientific

Exchange Award ISEO046203, and by NWO through NFI

Proj.ct ALADDIN under Contract number NF 62-376. CWI
and lJniversity of Amsterdam. Address: CWI, Kruis-
laan 413, 1098 SJ Amsterdam, The Netherlands. Email:
paulv@cwi.nl.

fiLANL and Santa F~ ~~titute. Ad&.eSS: Theoretical Di-

vision, Los Alamos National Laboratory, Los Alamos, NM

87545, USA. Email: whz@lanLgov.

1 The Kolmogorov complexity, (or algorithmic en-

tropy), K(z) of a string z is the length of the short-

est binary program to compute z on a universal

computer (such as a universal Turing machine). In-

tuitively, K(z) represents the minimal amount of

information required to generate z by any effective

process, The conditional Kolmogorov complexity

K(ylz), of y relative to x, maybe defined similarly

as the size of a minimal-sized program to compute

y if z is furnished as an auxiliary input to the com-

putation. The functions K() and K(I), though de-

fined in terms of a particular machine model, are

machine-independent up to an additive constant

and acquire an asymptotically universal and abso-

lute character through Church’s thesis, from the

abilitv of universal machines to simulate one an-
permission to copy without fee all or part of this material is other and execute any effective process.
granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the
Our goal is to find the most appropriate informa-

title of the publication and its date appear, and notice is given tional “distance” between two strings, i.e. the min-

that copying is by permission of the Association for Computing

Machinery.
1Part of the results were announced in M. Li and P.M .B.

To copy otherwise, or to republish, requires a fee V.t,

and/or specific permission.
I anyi, pp. 42-46 In: IEEE PTOC. Physics and Computa-

25th ACM STOC ‘93-51931CA,USA
tton Workshop, 1992.

e 1993 ACM 0-89791-591-71931000510021 . ..$1.50

21

imal quantity of information sufficient to translate

between z and y, generating either string effectively

from the other. We first look at the length of the

shortest binary program which computes z from y

as well as computing y from z. Being shortest, such

a program should take advantage of any redundancy

between the information required to obtain from z

to y and the information required to obtain from y

to z. Therefore, we would like to know to what ex-

tent the information required to compute ~ from y

can be made to overlap with that required to com-

pute y from z. In some simple cases, complete over-

lap can be achieved, so that the same minimal pro-

gram suffices to compute z from y as to compute

y from z. For example if z and y are independent

random binary strings of the same length n (up to

additive contants K(zly) = K(ylx) = n), then their

bitwise exclusive-or z @ y serves as a minimal pro-

gram for both computations. Similarly, if z = uv

and y = vw where u, v, and w are independent

random strings of the same length, then u @ w is

a minimal program to compute either string from

the other. Now suppose that more information is

required for one of these computations than for the

other, say,

K(ylz) > K(zly) .

Then the minimal programs cannot be made iden-

tical because they must be of different sizes. Nev-

ertheless, in simple cases, the overlap can still be

made complete, in the sense that the larger pro-

gram (for y given z) can be made to contain all the

information in the shorter program, as well as some

additional information. This is so when x and y are

independent random strings of unequal length, for

example u and vw above. Then u @ v serves as a

minimal program for u from VW, and (u@v)w serves

as one for vw from u.

Section 3 exhibits a principal result of this paper

that, up to logarithmic error terms, the information

required to translate between two strings can always

be represented in this maximally overlapping way.

Namely, let

kl = K(zly) , kz = K(ylm) ,

Z=kz–kl.

Then there is a string d of length kl + O(log kl) and

a string q of length 1+ O(log 1) such that d serves as

the minimal program both from Zq to y and from

y to zq. This means that the information required

to pass from z to y is always maximally correlated

with the information required to get from y to z.

It is therefore never the case that a large amount

of information is required to get from z to y and

a large but independent amount of information is

required to get from y to z. This demonstrates that

El = max{~(ylz), K(cly)} equals the length of the

shortest program (d, q) to compute x from y and y

from z, up to a logarithmic additive term. (It is

very important here that the time of computation

is completely ignored: this is why this result does

not contradict the idea of one-way functions.)

The process of going from a to y may be broken

into two stages. First, add the string q; second,

use the difference program d between qx and y. In

the reverse direction, first use d to go from y to

qz; second, erase q. Thus the computation from

x to y needs both d and q, while the computation

from y to z needs only d as program. The forego-

ing is true of ordinary computations, but if one in-

sists that the computation be performed reversibly,

that is by a machine whose transition function is

1:1 [16, 3], then the full program p = dq is needed to

perform the computation in either direction. This

is because reversible computers cannot get rid of

unwanted information simply by erasing it as ordi-

nary irreversible computers do. If they are to get rid

of unwanted information at all, they must cancel it

against equivalent information already present else-

where in the computer. Reversible computations

are discussed further in section 5.

Let us note that the programs for going between

independent random z and y can, if one wishes,

also be made completely independent. For example

use y to go from z to y and z to go from y to S.

We suspect this may be true in general (at least

to within logarithmic terms, at least with respect

to some oracle), in analogy with the Slepian- Wolf

Theorem of classical information theory [8].

Section 4 develops an axiomatic theory of ‘picture

distance’ and argues that the function

E~(z, y) = max{K(zly), K(ylz)}

is the most natural way of formalizing the notion

of a universal effective ‘picture distance’ between z

and y. This function is symmetric, obeys the trian–

gle inequality to within an additive constant, and

is minimal among a class of functions satisfying a

normalization constraint appropriately limiting the

number of distinct strings y within a given distance

of any x.

Section 5 defines a reversible distance Ez repre-

senting the amount of information required to pro-

gram a reversible computation from a to y. The

E2 distance is equal within an additive constant to

the length of the conversion program p = dq consid-

ered above, and so is at most logarithmically greater

22

than the optimal distance El. The reversible pro-

gram functions in a catalytic capacity in the sense

that it remains unchanged throughout the compu-

tation.

Hence, three very different definitions arising

from different concerns turn out to define the same

fundamental notion of optimal effective information

distance.

Section 6 instead considers reversible computa-

tions in which additional information r besides z

is consumed, and additional information s besides

y is generated in the course of the computation.

The sum, E3(z, y), of these amounts of information

represents the minimal number of irreversible bit

operations in a computation from x to y in which

the program is not retained. E3 is shown to be

equal to within a logarithmic term to Zurek’s sum

metric K(yl z) + K(a /y), which is typically larger

than our proposed optimal metric because of the

redundancy between T and s. However, using the

program involved in El we both consume it and are

left with it at the end of the computation, account-

ing for 2E1 (z, y) irreversible bit operations, which

is typically larger than E3(z, y).

Section 7 compares the dimensional properties of

the optimal and sum metrics.

Finally Section 8 considers the problem of defin-

ing a thermodynamic entropy cost of transform-

ing z into y, and argues that it ought to be an

antisymmetric, transitive function, in contrast to

the informational metrics which are symmetric.

Landauer’s principle connecting logical and phys-

ical irreversibility is invoked to argue in favor of

K(z) -- K(y) as the ideal thermodynamic cost of

transforming z into y.

2 Kolmogorov Complexity

Let l(p) denote the length of the binary string p. Let

#S denote the number of elements of set S. We give

some definitions and basic properties of Kolmogorov

complexity. (Some of us prefer the name ‘algorith-

mic entropy ’.) For details and attributions, we re-

fer to [22, 11, 12, 18]. We say that a real-valued

function f(z, y) over strings is upper semicom-

putable if the set of triples

{ (z, y, d) : ~(z, y) <d, d rational}

is recursively enumerable. A function ~ is lower

semicomputable if –~ is upper semicomputable.

A prefix set is a set of strings such that no mem-

ber is a prefix of any other member. A partial re-

cursive function F(p, z) is called a prefix machine

(interpreter) if for each z, {p: 3(y) l’(p, x) = y}

is a prefix set. The argument p is called a self-

delimiting program for y from z, because, owing

to the prefix property, no punctuation is required to

tell the machine how much ofp to use. We define the

conditional Kolmogorov complexity, (the ‘self-

delimiting’ version) KF (ylz) of y with condition z,

with respect to the machine F as the minimal l(p)

where the minimum is take over all strings p with

F(p, z) = y. It is well-known that there is a prefix

machine U with the property that for all other pre-

fix machines F and for all p, z there is an additive

constant CF such that KU (p[x) < KF (p, z) + c~.

Such a prefix machine will be called optimal. We

fix such an U and write

K(zly) = K~(z]y) .

We will call K(z Iy) the Kolmogorov complexity,

of z with respect to y. From now on, we will denote

by ~ an inequality to within an additive constant,

and by $ the situation when both ~ and $- hold.

Let us give a useful characterization of K(z Iy).

It is easy to see that K(* Iy) is an upper semicom-

putable function with the property ~Y 2-K(Z Iv) <

1. But also, if ~(z, y) is an upper semicomputab~

function with ~V 2-ftc’YJ < 1 then K(ylc) <

f(% Y).

Kolmogorov complexity has the following addi-

tion property.

K(x, Y) : K(z)+ K(YIT K(z)) .

3 Conversion Programs

We show that El(~, y) = max{K(zly), K(ylz}

equals the length the shortest program for the uni-

versal computer to compute z from y and y from z,

up to a logarithmic additive term.

(3.1) Difference Theorem With the notation

of the Introduction, suppose kl < k2. Then there is

a string p of length k2 + O(log k2) such that

u(p, Oz)= y, U(p, ly) = z .

This is equivalent to asserting that there is a

string p of length k2 such that both K(ylz, p) and

K(z Iy, p) are bounded by O(log kz). We call this

theorem the Difference Theorem since it asserts the

existence of a difference string p that converts both

ways between z and y and at least one of these con-

versions is optimal. If kl = k2 then the conversion

is optimal in both directions.

23

Proof Let S be the set of all binary strings. Let

X, Y be two disjoint sets whose elements are in

a one-to-one correspondence with the elements of

S: we could e.g. set X = {(s,0) : s c S} and

Y={(s,l):s ES}. Let G=(XUY, E) be the

following infinite bipartite graph over X U Y with

set of edges E where

E = { (Z, y) : ~(~\Y) < h, ~(Yk) < ~2 } .

By definition, the maximum degree of the nodes

in X is at most 2L2+1 and in Y is at most 2~’+1.

Two edges are adjacent if they have common end-

points. A matching is a set of nonadjacent edges.

We can partition E into at most 2k’+2 matchings

M1, M2, If we can do this constructively we

have a program p of length kz + O(log k2) that

takes OZ into y and ly into z. Indeed, for a pair

(z, y) c E, the number i of the matching AIi con-

taining (L-C,y) has length at most k2+O(l). Knowing

i and z gives y while knowing i and y gives x.

Let us do the partitioning constructively, in the

most simple-minded way. By its definition, the set

E can be enumerated into a sequence el, e2, . . . of

edges. In step t,a new edge et is given. We will

put it into one of the nonempty matchings created

so far, (it does not matter into which one) if this

is possible; if it is not we create a new matching.

For clarity, here is a formal definition. We define,

recursively, a function n(t) for each tsuch that Mi =

{et : n(t) = z}. Let

M~={eU: n(u)= i,u <t}.

Then n(t) is the first i such that et is not adjacent

to any edge of M;. Let us show that the number of

nonempty matchings is indeed at most 2k2+2. Let

M; be a nonempty matching: then there is a t such

that z = n(t). The edge et is adjacent to some edge

in each matching Mj for j < i. But the number

of edges that an edge can be adj scent to is at most

the sum of the degrees of the endpoints—actually,

2 less than that. Hence, z – 1 ~ 2k2+2 – 2.

More explicitly, we describe the program p such

that U(p, &E) = ~ if b = O and U(p, by) = z if b = 1.

It contains the following parts.

The numbers k2 and i. Procedure generating the

sequence el, e2, Procedure generating simulta-

neously the matchings Ml, M2, Procedure gen-

erating Mi. Procedure to find y using x, Mi if b = O

and to find z using y, Mi if b = 1. ~

(3.2) Excess Theorem Let us use the above no-

tation, with 1 = k2 – kl. There is a binary string q

of length / + O(log 2) such that

~(~lqz) = K(qzly) = kl + O(logkl) .

The proof, based on the technique of the above

proof, is omitted here.

4 Distance Axioms

Let us identify digitized black-and-white pictures

with binary strings. There are many distances de-

fined for binary strings. For example, the Hamming

distance and the Euclidean distance. Such distances

are sometimes appropriate. For inst ante, if we take

a binary picture, and change a few bits on that pic-

ture, then the changed and unchanged pictures have

small Hamming or Euclidean distance, and they do

look similar. However, this is not always the case.

The positive and negative prints of a photo have the

largest possible Hamming and Euclidean distance,

yet they look similar in our eyes. Also, if we shift

a picture one bit to the right, again the Hamming

distance may increase by a lot, but the two pictures

remain similar. Many approaches to pattern recog-

nition try to define picture similarity. Let us show

that the distance El defined above is, in a sense,

minimal among all reasonable similarity measures.

A distance measure must be nonnegative for all

z # y, symmetric, and satisfy the triangle inequal-

ity. This is not sufficient since a distance measure

like D(z, y) = 1 for all z # y must be excluded.

For each z and d, we want only finitely many ele-

ments y at a distance d from z. Exactly how fast

we want the distances of the strings y from z to go

to co is not important: it is only a matter of scal-

ing. For convenience, we will require the following

normalization property:

E 2-D(x,Y) <1.

Y

We consider only distances that are computable in

some broad sense. This condition will not be seen

as unduly restrictive. As a matter of fact, only up-

per semicomputabdity of D(z, y) will be required.

This is reasonable: as we have more and more time

to process z and y we may discover new and new

similarities among them, and thus may revise our

upper bound on their distance. The upper semicom-

putability means exactly that ~(z, y) is the limit of

a computable sequence of such upper bounds.

A permissible dist ante, D(z, y), is a total non-

negative function on the pairs x, y of binary strings

that is O only if z = y, is symmetric, satisfies the

triangle inequality, is semicomputable and normal-

ized. The following theorem shows that El is, in

some sense, the optimal permissible distance. We

find it remarkable that this distance happens to also

24

have a “physical” interpretation as the approximate

length of the conversion program of theorem 3.1,

and, as shown in the next section, of the smallest

program that transforms z into y on a reversible

machine.

(4.1) Theorem For an appropriate constant c,

let E(z, g) = El(z, y) + c if z + y and O otherwise.

Then E(x, y) is a permissible distance function that

is minimal in the sense that for every permissible

distance function D(z, y) we have

E(z, y) zD(z, y) ,

Proof The nonnegativity and symmetry proper-

ties are immediate from the definition. The addi-

tion property of complexity implies that there is a

nonnegative integer constant c such that

G(z>z) < J%(~, Y) +.%(Y, z) +c.

Let this c be the one used in the statement of

the theorem, then E(z, y) satisfies the triangle in-

equality without an additive constant. The normal-

ization property as well as the minimality follow

from the characterization of complexity mentioned

in Section 2. #

5 Reversible Computations

Reversible models of computation, in which the

transition function is 1:1, have been explored espe-

cially in connection with the question of the thermo-

dynamic limits of computation. Reversible Turing

machines were introduced by Lecerf[16] and inde-

pendently but much later by Bennett [3, 4]. Further

results concering them can be found in [4, 5, 171.

Reversibility of a Turing machine’s transition

function can be guaranteed by requiring disjoint-

ness of the ranges of the quintuples, just as deter-

minism is guaranteed by requiring disjointness of

their domains. To assure that the machine’s global

input :output relation is also 1:1, it is necessary to

impose a standard format on the initial and final

instantaneous descriptions, in particular requiring

that all working storage other than that used for

the input and output strings be blank at the be-

ginning and end of the computation. Let {$i} be

the partial recursive function computed by the i’th

such reversible Turing machine. As usual, we let

{4,} denote the partial recursive function computed

by the i’th ordinary (in general irreversible) Turing

machine. Among the more important properties of

reversible Turing machines are the following:

b

●

●

●

●

There is a universal reversible machine, i.e. an

index u such that for all k and z, @U(ktz) =

kt$~ (z). (Here kt denotes a self-delimiting

representation of the index k).

Two irreversible algorithms, one for comput-

ing y from z and the other for computing z

from y, can be efficiently combined to obtain

a reversible algorithm for computing y from z.

More formally, for any two indices i and j one

can effectively obtain an index k such that, for

any strings z and y, if @i(a) = Y and @l (Y) = Z,

then $~(z) = y.

From any index i one may obtain an index k

such that i~ has the same domain as ~i and,

for every x, ~~(z) = (z, q$i(z)). In other words,

an arbitrary Turing machine can be simulated

by a reversible one which saves a copy of the

irreversible machine’s input in order to assure

a global 1:1 mapping.

The above simulation can be performed rather

efficiently. In particular, for any e > 0 one can

find a reversible simulating machine which runs

in time O(Tltc) and space 0(S log T) com-

pared to the time T and space S of the irre-

versible machine being simulated.

From any index i one may effectively obtain an

index k such that if q$z is 1:1, then ~k = #,.

The reversible Turing machines {@~ }, there-

fore, provide a Godel-numbering of all 1:1 par-

tial recursive functions.

The connection with thermodynamics comes from

the fact that in principle the only thermodynam-

ically costly computer operations are those that

are logically irreversible, i.e. operations that

map several distinct logical states of the computer

onto a common successor, thereby throwing away

information about the computer’s previous state

[14, 3, 10, 4]. The thermodynamics of computation

is discussed further in section 8. Here we show that

the minimal program size for a reversible computer

to transform input x into output y is equal within

an additive constant to the size of the minimal con-

version string p of theorem 3.1.

The theory of reversible minimal program size is

conveniently developed using a reversible analog of

the universal prefix machine U defined in Section

2. A partial recursive function F(p, z) is called a

reversible prefix machine if

for each p, 17(p, t) is 1:1 as a function of z;

for each z, {p: 3(y)F(p, z) = Y } k a prefix set;

25

for each y, {p : d(z)l’(p, a) = y} is a prefix set.

Such an F may be thought of as the function com-

puted by a reversible Turing machine which per-

forms a 1:1 mapping on z * y under the control

of a program p which remains on the program tape

throughout the computation. Any other work tapes

used during the computation are supplied in blank

condition at the beginning of the computation and

must be left blank at the end of the comput at ion.

The program tape’s head begins and ends scan-

ning the leftmost square of the program, which is

self-delimiting both for forward computations from

each input z as well as for backward computations

from each output y. A universal reversible pre-

fix machine UR, whose program size is minimal to

within an additive constant, can readily be shown to

exist, and the reversible Kolmogorov complex-

ity KR(y]z) defined as rein{ l(p) : .! Ill(p,z) = y}.

In Section 3, it was shown that for any strings

z and y there exists a conversion program p,

of length at most logarithmically greater than

max{K(y]x), K(zly)}, such that U(P, Oz) = y and

iY(p, ly) = z. Here we show that the length of this

minimal conversion program is equal within a con-

stant to the length of the minimal reversible pro-

gram for transforming z into y.

(5.1) Theorem

KR(ylz) * rein{ l(p) : U(p, Oz) = y, U(p, ly) = ~}.

Proof This proof is an example of the general

technique for combining two irreversible programs,

for y from w and for z from y, into a single re-

versible program for y from z. In this case the two

irreversible programs are almost the same, since by

theorem 3.1 the minimal conversion program p is

both a program for y given OZ and a program for

z given ly. The computation proceeds by several

stages as shown in Table 1. To illustrate motions of

the head on the self-delimiting program tape, the

program p is represented by the string “prog” in the

table, with the head position indicated by a caret.

Each of the stages can be accomplished without

using any many-to-one operations. For example,

appending a zero to the beginning of z in stage 1 is

can be undone by changing the zero to a blank. In

stage 2, the computation of y from z, which might

otherwise involve irreversible steps, is rendered re-

versible by saving a history, on previously blank

tape, of all the information that would have been

thrown away. In stage 3, making an extra copy of

the output onto blank tape is an intrinsically re-

versible process, and therefore can be done without

writing anything further in the history. Stage 4 ex-

actly undoes the work of stage 2, which is possible

because of the history generated in stage 2. Perhaps

the most critical stage is stage 7, in which z is com-

puted from y for the sole purpose of generating a

history of that computation. Then, after the extra

copy of x is reversibly disposed of in step 8 by can-

cellation (the inverse of copying onto blank tape),

stage 9 undoes stage 7, thereby disposing oft he his-

tory and the remaining copy of x, while producing

only the desired output y.

Not only are all operations reversible, but the

computations from z to y in stage 2 and from y

to z in stage 7 take place in such a manner as to

satisfy the requirements for a reversible prefix ma-

chine. Hence the minimal irreversible conversion

program p, with constant modification, can be used

as a reversible program for UR to compute y from

z.

Conversely, the minimal reversible program for y

from z, with constant modification, serves as a pro-

gram for y from z for the ordinary irreversible prefix

machine U, because reversible prefix machines are a

subset of ordinary prefix machines. This establishes

the theorem. 9

We define the reversible distance between x

and y as

Ez(z, y) = KR(ylz) = min{~(p) : UR(p, z) = y}.

As just proved, this is within an additive constant of

the size of the minimal conversion program of theo-

rem 3.1. Although it maybe logarithmically greater

than the optimal dist ante El, it has the intuitive

advantage of being the actual length of a concrete

program for passing in either direction between z

and y. The optimal distance El on the other hand

is defined only as the greater of two one-way pro-

gram sizes, and may not correspond to the length

of any two-way translation program.

E2 may indeed be legitimately called a distance

because it is symmetric and obeys the triangle in-

equality to within an additive constant (which can

be removed by the additive renormalization tech-

nique described at the end of Section 4).

(5.2) Theorem

E2(z, z) ~ Ez(z, y) + ~2(y, Z)

The proof is omitted.

6 Information Flux Distance

The reversible distance E2 defined in the previous

section, is equal to the length of a “catalytic” pro-

26

Stage and Action Program Tape Work Tape

O. Initial configuration firog x

1. Append O to beginning of x firog ox

2. Compute y, saving history prog y (ylz)-history

3. Copy y to blank region prog g (yl z)-history g

4. Undo comp, of g from z firog Oz Y

5. Remove O, swap x and y Frog Y x

6. Append 1 to y firog ly x

7. Compute a, saving history prog z (z]y)-history z

8. Cancel extra z prog x (z/y) -history

9. Undo comp. of z from y firog ly

10. Remove 1 from y firog Y

Table 1: Combining irreversible computations of y from z and z from y to achieve a reversible computation

of y from z.

gram, which allows the interconversion of z and y

while remaining unchanged itself. Here we con-

sider noncatalytic reversible computations which

consume some information p besides z, and pro-

duce some information q besides y. Even though

consuming and producing information may seem to

be operations of opposite sign, we can define a dis-

tance based on the notion of information flow, as the

minimal sum of amounts of extra information flow-

ing into and out of the computer in the course of the

computation transforming z into y. For a function

+ computed on a reversible Turing machine, let

E~(z, Y) = min{l(p) + 1(9) : @((~, P)) = (Y, q) }.

It follows from the existence of universal reversible

Turing machines mentioned in Section 5 that there

is a universal (non-self-delimiting) reversible Turing

machine @U such that for all functions @ computed

on a reversible Turing machine, we have

E+w(z, y) < E@(z, y) + c+

for all ~ and y, where c+ is a constant which de-

pends on # but not on x or y. We define the sum

distance as

E3(Z, y) = E*U(Z, y) .

(6.1) Theorem

E3(~, Y) = K(ZIY) + K(YIZ) + 0(1WE3(% Y)) .

Proof Let us show first the lower bound

E3(z, y) ~ K(ylz) + K(zly). To compute y from z

we must be given a program p to do so to start out

with. By definition, K(y[~) < l(p)+ O(log(p)). The

last term reflects the fact that p is externally delim-

ited, while the minimal program used to define K

is self-delimiting and may therefore need to be log-

arithmically longer. Assume the computation from

Z, p ends Up with y, q. Since the computation is re-

versible we can compute z from y, q. Consequently,

K(zly) s Z(q)+ O(log(l(q))). Let us turn to the up-

per bound and assume kl = K(aly) < kz = -K(ylz)

with 1 = k2 —lcl. According to Theorem 3.2, there is

a string q of length 1+ O(log 1) such that K(qzly) =

kl + O(logkl) and K(ylqz) = kl + O(logkl). We

can even assume q to be self-delimiting: the price

of this can be included into the O(log 1) term. Ac-

cording to Theorem 3.1 and Theorem 5.1 there is a

program p of length kl + O(log kl) going reversibly

between qz and y. Therefore with a constant extra

program s, the universal reversible machine will go

from (pq, c) to (p, y). And by the above estimates

l(pq)+l(p) ~ 2kl+l+O(log k2) = kl+kz+O(log kz).

m

Note that all bits supplied in the beginning to

the computation, apart from input z, as well as all

bits erased at the end of the computation, are ran-

dom bits. This is because we supply and delete only

shortest programs, and a shortest program p satis-

fies K(P) z l(p), that is, it is maximally random.

The metrics we have considered can be arranged
log

in increasing order. Here, the relation < means in-

equality to within an additive O(log), and l~s means
log
< and l~g.

El(z, V) = max{K(y[2), K(@[y)}

l&g ,?32($, y) = KR(y/z)

~ rein{ l(p) : U(p, 02) = y, U(p, ly) = z }

log
< K(z\y) + K(ylz) ‘~g E3(z, y)

27

log
< 2El(z, y) .

The sum distance E3, in other words, can be any-

where between the optimum distance El and twice

the optimal distance. The former occurs if one of

the conditional complexities K(ylz) and K(z Iy) is

is zero, the latter if the two conditional complexities

are equal.

7 Dimensional Properties

In a discrete space with some distance function, the

rate of growth of the number of elements in balls of

size d can be considered as a kind of “dimension”

of the space. The space with distance El(~, y) =

max{K(z ly), K(yl z)} behaves rather simply from

a dimensional point of view, For a binary string z,

let Bl(d, z) be the set of strings y with El(z, y) ~ d.

(7.1) Theorem We have

d – K(d) < log#131(d, z) < d– K(d]z) .

The same bounds apply to Bl(d, z) n { y : l(y) =

l(x) },

The proof is omitted.

It is interesting that a similar dimension rela-

tion holds also for the larger distance E3(z, y) =

K(yl~) + K(z[y). The proof is omitted.

(7.2) Theorem Let x be a binary string. There

is a positive constant c such that for all suffi-

ciently large d, the number of binary strings y with

Es(z, y) ~ d is at most 2d/d and at least 2d/d2.

For the distance E3, for the number of strings of

length n near a random string z of length n, (i.e.

a string with K(z) near n) the picture is a little

different from that of distance El. In this distance,

“tough guys have few neighbors”. In particular, a

random string z of length n has only about 2df2

strings of length n within distance d. The follow-

ing theorem describes a more general situation. Its

proof is omitted here.

(7.3) Theorem Let the binary strings x, y have

length n. For each z the number of y‘s such that

~3(z, V) < o! is 2a with

while n — K(z) s d. For n — K(z) ~ d we have

a = d+ O(logn).

It follows from our estimates out that in every set

of low Kolmogorov complexity almost all elements

are far away from each other in terms of the distance

E3. Here, the Kolmogorov complexity K(S) of a set

is the length of the shortest binary program that

enumerates S and then halts.

(7.4) Theorem For a constant c, let S be a set

with #S = 2d and K(S) = clogd. Almost all pairs

of elements z, y c S have distance El(z, y) ~ d, up

to an additive logarithmic term.

The proof of this theorem is easy. A similar state-

ment can be proved for the distance of a string z

(possibly outside S) to the majority of elements y

in S. If K(z) ~ n, then for almost all y E S we

have El(z, y) z n+ d – O(logdn).

8 Thermodynamic Cost

Thermodynamics, among other things, deals with

the amounts of heat and work ideally required, by

the most efficient process, to convert one form of

matter to another. For example, at O C and at-

mospheric pressure, it takes 80 calories of heat and

no work to convert a gram of ice into water at the

same temperature and pressure. From an atomic

point of view, the conversion of ice to water at O C

is a reversible process, in which each melting water

molecule gains about 3.8 bits of entropy (represent-

ing the approximately 23.s-fold increased freedom

of motion it has in the liquid sate), while the en-

vironment loses 3.8 bits. During this ideal melt-

ing process, the entropy of the universe remains

constant, because the entropy gain by the ice is

compensated by an equal entropy loss by the envi-

ronment. Perfect compensation takes place only in

the limit of slow melting, with an infinitesimal tem-

perature difference between the ice and the water.

Rapid melting, e.g. when ice is dropped into hot

water, is thermodynamically irreversible and ineffi-

cient, with the environment (the hot water) losing

less entropy than the ice gains, resulting in a net

and irredeemable entropy increase for the universe

as a whole.

Turning again to ideal reversible processes, the

entropy change in going from state X to state Y is

an antisymmetric function of X and Y; thus, when

water freezes at O C by the most efficient process,

it gives up 3.8 bits of entropy per molecule to the

environment. When more than two stat es are in-

volved, the entropy changes are transitive: thus the

entropy change per molecule of going from ice to

water vapor at O C (+32.6 bits) plus that for going

28

from vapor to liquid water (–28.8 bits) sum to the

entropy change for going from ice to water directly.

Because of this antisymmetry and transitivity, en-

tropy can be regarded as a thermodynamic poten-

tial or state function: each state has an entropy,

and the entropy change in going from state .X to

state Y by the most efficient process is simply the

entropy difference between states X and Y.

Thermodynamic ideas were first successfully ap-

plied to computation by Landauer. According to

Landauer’s principle [14, 4, 20, 21, 6] an opera-

tion which maps n states onto a common successor

state must be accompanied by an entropy increase

of logz n bits in other, non-information-bearing de-

grees of freedom in the computer or its environment.

At room temperature, this is equivalent to the pro-

duction of M“ in 2 (about 70 10-22) calories of waste

heat per bit of information discarded.

Landauer’s principle follows from the fact that

such a logically irreversible operation would other-

wise be able to decrease the thermodynamic entropy

of the computer’s data without a compensating en-

tropy increase elsewhere in the universe, thereby vi-

olating the second law of thermodynamics.

Converse to Landauer’s principle is the fact that

when a computer takes a physical randomizing step,

such as tossing a coin, in which a single logical state

passes stochastically into one of n equiprobable suc-

cessors, that step can, if properly harnessed, be used

to remove log2 n bits of entropy from the computer’s

environment. Models have been constructed, obey-

ing the usual conventions of classical, quantum, and

thermodynamic thought-experiments [14, 13, 3, 4]

[10, 15, 19, 1, 9] showing both the ability in princi-

ple to perform logically reversible computations in a

thermodynamically reversible fashion (i. e. with ar-

bitrarily little entropy production), and the ability

to harness entropy increases due to data randomiza-

tion within a computer to reduce correspondingly

the entropy of its environment.

In view of the above considerations, it seems rea-

sonable to assign each string z an effective ther-

modynamic entropy equal to its Kolmogorov com-

plexity K(z). A computation that erases an n-bit

random random string would then reduce its en-

tropy by n bits, requiring an entropy increase in

the environment of at least n bits, in agreement

with Landauer’s principle.

Conversely, a randomizing computation that

starts with a string of n zeros and produces n ran-

dom bits has, as its typical result, an algorithmically

random n-bit string z, i.e. one for which K(z) N n.

By the converse of Landauer’s principle, this ran-

domizing computation is capable of removing up to

n bits of entropy from the environment, again in

agreement with the identification of the thermody-

namic entropy and Kolmogorov complexity.

What about computations that start with one

random string x and end with another y? By the

transitivity of entropy changes one is led to say that

the thermodynamic cost, i, e. the minimal entropy

increase in the environment, of a transformation of

z into y, should be

w(y[~) = K(z) – K(y) ,

because the transformation of z into y could be

thought of as a two-step process in which one first

erases z, then allows g to be produced by random-

ization. This cost is obviously antisymmetric and

transitive, but is not even semicomputable, being

at best expressible as the non-monotone limit of a

computable sequence of approximations.

W(yl z) as well as a similar antisymmetric mea-

sure of the thermodynamic cost of data transforma-

tions,

I’V’(ylw) = K(zly) – K(ylz)

were both considered by Zurek [20], who has also

pointed out that they are nearly equal (that is, that

they differ by at most a logarithmic additive term).

Here we note that W’ (y[z) is slightly non-transitive.

For example, it is known that there exist strings

[11] ~ of each length such that K(z*[z) % logl(z),

where Z* is the minimal program for z. Accord-

ing to the W’ measure, erasing such an z via the

intermediate Z* would generate K(z) less entropy

than erasing it directly, while for the W measure

the two costs would be equal within an additive

constant. Indeed, erasing in two steps would cost

only K(z Iz*) – K(z*Iz) + K(z*IO) – K(OIZ*) 3

K(x) – K(z* Iz) while erasing in one step would

cost K(z IO) — K(Ola) = K’(z), Subtle differences as

the one between W and W’ pointed out above (and

resulting in a slight nontransitivity of W’) depend

on detailed assumptions which must be, ultimately,

motivated by physics [21],

Bennett[4] and especially Zurek[21] have consid-

ered the thermodynamics of an intelligent demon

or engine which has some capacity to analyze and

transform data z before erasing it. If the demon

erases a random-looking string, such as the dig-

its of n, without taking the trouble to understand

it, it will commit a thermodynamically irreversible

act, in which the entropy of the data is decreased

very little, while the entropy of the environment in-

creases by a full n bits. On the other hand, if the

29

demon recognizes the redundancy in r, it can trans-

form m to an empty string by a reversible computa-

tion, and thereby accomplish the erasure at very lit-

tle thermodynamic cost. More generally, given un-

limited time, a demon could approximate the semi-

computable function K(z) and so compress a string

z to size K(z) before erasing it. But in limited

time, the demon will not be able to compress z so

much, and will have to generate more entropy to

get rid of it. This tradeoff between speed and ther-

modynamic efficiency is superficially similar to the

tradeoff between speed and efficiency for physical

processes such as melting, but the functional form

of the tradeoff is very different. For typical phys-

ical state changes such as melting, the excess en-

tropy produced per molecule goes to zero inversely

in the time t allowed for melting to occur. But the

time-bounded Kolmogorov complexity Kt (z), i. e,

the size of the smallest program to compute z in

time < t, in general approaches K(z) only with in-

computable slowness as a function of t and ~.

References I

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

P.A. Benioff. Quantum mechanical Hamiltonian

models of discrete processes that erase their his-

tories: applications to Turing machines. Int’1 J.

Z’heoret, Physics, 21:177-202, 1982.

P.A. Benioff. Quant urn mechanical Hamiltonian

models of computers. Ann. New York Acad. Scz.,

480:475-486, 1986.

C .H. Bennett. Logical reversibility of computation.

IBM J. Res. Develop., 17:525-532, 1973.

C.H. Bennett. The thermodynamics of computat-

ion—a review. Int’1 J. Theoret. Physics, 21:905-

940, 1982.

C. H. Bennett. Time/space trade-offs for reversible

computation. S. I.A.M. Journal on Computing,

18:766-776, 1989.

C. M. Caves, W. G. Unruh, and W. H. Zurek.

Comment on quantitative limits on the ability of a

Maxwell Demon to extract work from heat. Phgs.

Rev. Lett., 65:1387, 1990.

G. Chaitin. A theory of program size formally

identical to information theory. J. Assoc. Cornput.

kff2Ch., 22:329-340, 1975.

I. &.isz6r and J. Korner. Information Theory. Aca-

demic Press, New York, 1980.

R.P. Feynman. Quantum mechanical computers.

optics News, 11:11, 1985.

E. Fredkin and T. Toffoli. Conservative logic. Int’2
J. Z’heoret. Physics, 21(3/4):219-253, 1982.

P. G6cs. On the symmetry of algorithmic informa-

tion. soviet Math. Doldady, 15:1477-1480, 1974.

Correction, Ibid., 15(1974), 1480.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

P. Gics. Lecture Notes on Descriptional Com-

plexity and Randomness Technical Report 87-103,

Computer Science Department, Boston University.

R. W. Keyes and R. Landauer. Minimal energy dis-

sipation in logic. IBM J, Res. Develop., 14: 152–157,

1970.

R. Landauer. Irreversibility and heat generation

in the computing process, IBM J. Res. Develop.,

pages 183–191, July 1961.

R. Landauer. Int. J. Theor. Phgs., 21:283, 1982.

Yves Lecerf. Machines de Turing reversibles. Re-

cursive insolubility en n E N de l’equation u = W

ou O est un “isomorphism des codes”. C’omptes

Rendus, 257:1597-2600, 1963.

R. Y. Levine and A. T. Sherman. A note on Ben-

nett’s time-space trade-off for reversible computa-

tion. S.I.A .&f. Journal on Computing, 19:673-677,

1990.

M. Li and P.M.B. Vit6nyi. An Introduction to Kol-

mogorov Complexity and tts Applications. Springer

Verlag, New York, 1993.

K. Likharev. Classical and quantum limitations

on energy consumption on computation. lnt’/ J.

Theoret. Physics, 21:311–326, 1982.

W. H. Zurek. Thermodynamic cost of comput ation,

algorithmic complexity and the information metric.

Nature, 341:119-124, 1989.

W. H. Zurek. Algorithmic randomness and physical

entropy. Phgs. Rev., A40:4731–47,51, 1989.

A.K. Zvonkin and L.A. Levin. The complexity

of finite objects and the development of the con-

cepts of information and randomness by means of

the theory of algorithms. Russzan Math. Surveys,

25(6):83-124, 1970.

30

