
RS/6000 SP: Practical MPI Programming

Yukiya Aoyama
Jun Nakano

International Technical Support Organization

SG24-5380-00

www.redbooks.ibm.com

International Technical Support Organization SG24-5380-00

RS/6000 SP: Practical MPI Programming

August 1999

© Copyright International Business Machines Corporation 1999. All rights reserved.
Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (August 1999)

This edition applies to MPI as is relates to IBM Parallel Environment for AIX Version 2 Release 3 and Parallel System
Support Programs 2.4 and subsequent releases.

This redbook is based on an unpublished document written in Japanese. Contact nakanoj@jp.ibm.com for details.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in Appendix C,
“Special Notices” on page 207.

Take Note!

Contents

Figures . vii

Tables . xi

Preface . xiii
The Team That Wrote This Redbook . xiii
Comments Welcome . xiv

Chapter 1. Introduction to Parallel Programming .1
1.1 Parallel Computer Architectures .1
1.2 Models of Parallel Programming .2

1.2.1 SMP Based .2
1.2.2 MPP Based on Uniprocessor Nodes (Simple MPP)3
1.2.3 MPP Based on SMP Nodes (Hybrid MPP). .4

1.3 SPMD and MPMD .7

Chapter 2. Basic Concepts of MPI .11
2.1 What is MPI? .11
2.2 Environment Management Subroutines. .12
2.3 Collective Communication Subroutines .14

2.3.1 MPI_BCAST .15
2.3.2 MPI_GATHER. .17
2.3.3 MPI_REDUCE. .19

2.4 Point-to-Point Communication Subroutines .23
2.4.1 Blocking and Non-Blocking Communication23
2.4.2 Unidirectional Communication .25
2.4.3 Bidirectional Communication .26

2.5 Derived Data Types .28
2.5.1 Basic Usage of Derived Data Types .28
2.5.2 Subroutines to Define Useful Derived Data Types30

2.6 Managing Groups .36
2.7 Writing MPI Programs in C .37

Chapter 3. How to Parallelize Your Program .41
3.1 What is Parallelization?. .41
3.2 Three Patterns of Parallelization .46
3.3 Parallelizing I/O Blocks .51
3.4 Parallelizing DO Loops .54

3.4.1 Block Distribution .54
3.4.2 Cyclic Distribution .56
3.4.3 Block-Cyclic Distribution .58
3.4.4 Shrinking Arrays .58
3.4.5 Parallelizing Nested Loops .61

3.5 Parallelization and Message-Passing .66
3.5.1 Reference to Outlier Elements .66
3.5.2 One-Dimensional Finite Difference Method .67
3.5.3 Bulk Data Transmissions. .69
3.5.4 Reduction Operations .77
3.5.5 Superposition .78
3.5.6 The Pipeline Method .79
3.5.7 The Twisted Decomposition .83
© Copyright IBM Corp. 1999 iii

3.5.8 Prefix Sum . 87
3.6 Considerations in Parallelization . 89

3.6.1 Basic Steps of Parallelization. 89
3.6.2 Trouble Shooting . 93
3.6.3 Performance Measurements . 94

Chapter 4. Advanced MPI Programming . 99
4.1 Two-Dimensional Finite Difference Method . 99

4.1.1 Column-Wise Block Distribution . 99
4.1.2 Row-Wise Block Distribution . 100
4.1.3 Block Distribution in Both Dimensions (1) 102
4.1.4 Block Distribution in Both Dimensions (2) 105

4.2 Finite Element Method . 108
4.3 LU Factorization . 116
4.4 SOR Method . 120

4.4.1 Red-Black SOR Method . 121
4.4.2 Zebra SOR Method . 125
4.4.3 Four-Color SOR Method . 128

4.5 Monte Carlo Method . 131
4.6 Molecular Dynamics . 134
4.7 MPMD Models . 137
4.8 Using Parallel ESSL . 139

4.8.1 ESSL . 139
4.8.2 An Overview of Parallel ESSL . 141
4.8.3 How to Specify Matrices in Parallel ESSL 142
4.8.4 Utility Subroutines for Parallel ESSL . 145
4.8.5 LU Factorization by Parallel ESSL . 148

4.9 Multi-Frontal Method . 153

Appendix A. How to Run Parallel Jobs on RS/6000 SP.155
A.1 AIX Parallel Environment .155
A.2 Compiling Parallel Programs .155
A.3 Running Parallel Programs .155

A.3.1 Specifying Nodes .156
A.3.2 Specifying Protocol and Network Device .156
A.3.3 Submitting Parallel Jobs .156

A.4 Monitoring Parallel Jobs. .157
A.5 Standard Output and Standard Error .158
A.6 Environment Variable MP_EAGER_LIMIT. .159

Appendix B. Frequently Used MPI Subroutines Illustrated161
B.1 Environmental Subroutines .161

B.1.1 MPI_INIT .161
B.1.2 MPI_COMM_SIZE .161
B.1.3 MPI_COMM_RANK .162
B.1.4 MPI_FINALIZE .162
B.1.5 MPI_ABORT .163

B.2 Collective Communication Subroutines .163
B.2.1 MPI_BCAST. .163
B.2.2 MPE_IBCAST (IBM Extension) .164
B.2.3 MPI_SCATTER .166
B.2.4 MPI_SCATTERV .167
B.2.5 MPI_GATHER .169
B.2.6 MPI_GATHERV .171
iv RS/6000 SP: Practical MPI Programming

B.2.7 MPI_ALLGATHER . 173
B.2.8 MPI_ALLGATHERV . 174
B.2.9 MPI_ALLTOALL . 176
B.2.10 MPI_ALLTOALLV . 178
B.2.11 MPI_REDUCE. 180
B.2.12 MPI_ALLREDUCE . 182
B.2.13 MPI_SCAN . 183
B.2.14 MPI_REDUCE_SCATTER . 184
B.2.15 MPI_OP_CREATE . 187
B.2.16 MPI_BARRIER . 189

B.3 Point-to-Point Communication Subroutines . 189
B.3.1 MPI_SEND . 190
B.3.2 MPI_RECV . 192
B.3.3 MPI_ISEND. 192
B.3.4 MPI_IRECV. 195
B.3.5 MPI_WAIT. 196
B.3.6 MPI_GET_COUNT . 196

B.4 Derived Data Types. 197
B.4.1 MPI_TYPE_CONTIGUOUS . 198
B.4.2 MPI_TYPE_VECTOR . 199
B.4.3 MPI_TYPE_HVECTOR. 200
B.4.4 MPI_TYPE_STRUCT . 201
B.4.5 MPI_TYPE_COMMIT . 203
B.4.6 MPI_TYPE_EXTENT . 204

B.5 Managing Groups . 205
B.5.1 MPI_COMM_SPLIT . 205

Appendix C. Special Notices . 207

Appendix D. Related Publications . 209
D.1 International Technical Support Organization Publications. 209
D.2 Redbooks on CD-ROMs . 209
D.3 Other Publications. 209
D.4 Information Available on the Internet . 210

How to Get ITSO Redbooks .211
IBM Redbook Fax Order Form . 212

List of Abbreviations .213

Index .215

ITSO Redbook Evaluation .221
v

vi RS/6000 SP: Practical MPI Programming

Figures

1. SMP Architecture . 1
2. MPP Architecture . 2
3. Single-Thread Process and Multi-Thread Process . 3
4. Message-Passing. 4
5. Multiple Single-Thread Processes Per Node . 5
6. One Multi-Thread Process Per Node . 6
7. SPMD and MPMD . 7
8. A Sequential Program . 8
9. An SPMD Program. 9
10. Patterns of Collective Communication . 14
11. MPI_BCAST. 16
12. MPI_GATHER . 18
13. MPI_GATHERV . 19
14. MPI_REDUCE (MPI_SUM) . 20
15. MPI_REDUCE (MPI_MAXLOC). 22
16. Data Movement in the Point-to-Point Communication 24
17. Point-to-Point Communication . 25
18. Duplex Point-to-Point Communication . 26
19. Non-Contiguous Data and Derived Data Types. 29
20. MPI_TYPE_CONTIGUOUS . 29
21. MPI_TYPE_VECTOR/MPI_TYPE_HVECTOR . 29
22. MPI_TYPE_STRUCT. 30
23. A Submatrix for Transmission . 30
24. Utility Subroutine para_type_block2a. 31
25. Utility Subroutine para_type_block2. 32
26. Utility Subroutine para_type_block3a. 34
27. Utility Subroutine para_type_block3. 35
28. Multiple Communicators. 36
29. Parallel Speed-up: An Ideal Case . 41
30. The Upper Bound of Parallel Speed-Up. 42
31. Parallel Speed-Up: An Actual Case . 42
32. The Communication Time . 43
33. The Effective Bandwidth . 44
34. Row-Wise and Column-Wise Block Distributions. 45
35. Non-Contiguous Boundary Elements in a Matrix . 45
36. Pattern 1: Serial Program. 46
37. Pattern 1: Parallelized Program . 47
38. Pattern 2: Serial Program. 48
39. Pattern 2: Parallel Program . 49
40. Pattern 3: Serial Program. 50
41. Pattern 3: Parallelized at the Innermost Level . 50
42. Pattern 3: Parallelized at the Outermost Level. 50
43. The Input File on a Shared File System. 51
44. The Input File Copied to Each Node . 51
45. The Input File Read and Distributed by One Process 52
46. Only the Necessary Part of the Input Data is Distributed. 52
47. One Process Gathers Data and Writes It to a Local File 53
48. Sequential Write to a Shared File . 53
49. Block Distribution . 54
50. Another Block Distribution . 55
© Copyright IBM Corp. 1999 vii

51. Cyclic Distribution .57
52. Block-Cyclic Distribution .58
53. The Original Array and the Unshrunken Arrays .59
54. The Shrunk Arrays .60
55. Shrinking an Array. .61
56. How a Two-Dimensional Array is Stored in Memory. .62
57. Parallelization of a Doubly-Nested Loop: Memory Access Pattern.63
58. Dependence in Loop C .63
59. Loop C Block-Distributed Column-Wise .64
60. Dependence in Loop D .64
61. Loop D Block-Distributed (1) Column-Wise and (2) Row-Wise.65
62. Block Distribution of Both Dimensions .65
63. The Shape of Submatrices and Their Perimeter. .66
64. Reference to an Outlier Element. .67
65. Data Dependence in One-Dimensional FDM .68
66. Data Dependence and Movements in the Parallelized FDM69
67. Gathering an Array to a Process (Contiguous; Non-Overlapping Buffers)70
68. Gathering an Array to a Process (Contiguous; Overlapping Buffers)71
69. Gathering an Array to a Process (Non-Contiguous; Overlapping Buffers)72
70. Synchronizing Array Elements (Non-Overlapping Buffers)73
71. Synchronizing Array Elements (Overlapping Buffers) .74
72. Transposing Block Distributions .75
73. Defining Derived Data Types .76
74. Superposition .79
75. Data Dependences in (a) Program main and (b) Program main2.80
76. The Pipeline Method .82
77. Data Flow in the Pipeline Method .83
78. Block Size and the Degree of Parallelism in Pipelining.83
79. The Twisted Decomposition .84
80. Data Flow in the Twisted Decomposition Method .86
81. Loop B Expanded .87
82. Loop-Carried Dependence in One Dimension .88
83. Prefix Sum. .88
84. Incremental Parallelization .92
85. Parallel Speed-Up: An Actual Case .95
86. Speed-Up Ratio for Original and Tuned Programs .96
87. Measuring Elapsed Time .97
88. Two-Dimensional FDM: Column-Wise Block Distribution100
89. Two-Dimensional FDM: Row-Wise Block Distribution101
90. Two-Dimensional FDM: The Matrix and the Process Grid102
91. Two-Dimensional FDM: Block Distribution in Both Dimensions (1)103
92. Dependence on Eight Neighbors .105
93. Two-Dimensional FDM: Block Distribution in Both Dimensions (2)106
94. Finite Element Method: Four Steps within a Time Step109
95. Assignment of Elements and Nodes to Processes .110
96. Data Structures for Boundary Nodes .111
97. Data Structures for Data Distribution .111
98. Contribution of Elements to Nodes Are Computed Locally113
99. Secondary Processes Send Local Contribution to Primary Processes.114
100.Updated Node Values Are Sent from Primary to Secondary115
101.Contribution of Nodes to Elements Are Computed Locally115
102.Data Distributions in LU Factorization .117
103.First Three Steps of LU Factorization .118
viii RS/6000 SP: Practical MPI Programming

104.SOR Method: Serial Run . 120
105.Red-Black SOR Method . 121
106.Red-Black SOR Method: Parallel Run. 123
107.Zebra SOR Method . 125
108.Zebra SOR Method: Parallel Run . 126
109.Four-Color SOR Method . 129
110.Four-Color SOR Method: Parallel Run . 130
111.Random Walk in Two-Dimension . 132
112.Interaction of Two Molecules . 134
113.Forces That Act on Particles . 134
114.Cyclic Distribution in the Outer Loop . 136
115.Cyclic Distribution of the Inner Loop . 137
116.MPMD Model . 138
117.Master/Worker Model . 139
118.Using ESSL for Matrix Multiplication . 140
119.Using ESSL for Solving Independent Linear Equations 141
120.Global Matrix . 143
121.The Process Grid and the Array Descriptor. 144
122.Local Matrices . 144
123.Row-Major and Column-Major Process Grids . 146
124.BLACS_GRIDINFO . 147
125.Global Matrices, Processor Grids, and Array Descriptors 150
126.Local Matrices . 151
127.MPI_BCAST . 164
128.MPI_SCATTER . 167
129.MPI_SCATTERV . 169
130.MPI_GATHER . 170
131.MPI_GATHERV. 172
132.MPI_ALLGATHER. 174
133.MPI_ALLGATHERV. 175
134.MPI_ALLTOALL. 177
135.MPI_ALLTOALLV . 179
136.MPI_REDUCE for Scalar Variables. 181
137.MPI_REDUCE for Arrays. 182
138.MPI_ALLREDUCE. 183
139.MPI_SCAN . 184
140.MPI_REDUCE_SCATTER . 186
141.MPI_OP_CREATE. 188
142.MPI_SEND and MPI_RECV . 191
143.MPI_ISEND and MPI_IRECV . 194
144.MPI_TYPE_CONTIGUOUS. 198
145.MPI_TYPE_VECTOR . 199
146.MPI_TYPE_HVECTOR . 200
147.MPI_TYPE_STRUCT . 202
148.MPI_COMM_SPLIT . 205
ix

x RS/6000 SP: Practical MPI Programming

Tables

1. Categorization of Parallel Architectures . 1
2. Latency and Bandwidth of SP Switch (POWER3 Nodes) 6
3. MPI Subroutines Supported by PE 2.4 . 12
4. MPI Collective Communication Subroutines . 15
5. MPI Data Types (Fortran Bindings) . 16
6. Predefined Combinations of Operations and Data Types 21
7. MPI Data Types (C Bindings). 37
8. Predefined Combinations of Operations and Data Types (C Language). 38
9. Data Types for Reduction Functions (C Language) . 38
10. Default Value of MP_EAGER_LIMIT . 159
11. Predefined Combinations of Operations and Data Types 181
12. Adding User-Defined Operations . 187
© Copyright IBM Corp. 1999 xi

xii RS/6000 SP: Practical MPI Programming

Preface

This redbook helps you write MPI (Message Passing Interface) programs that run
on distributed memory machines such as the RS/6000 SP. This publication
concentrates on the real programs that RS/6000 SP solution providers want to
parallelize. Complex topics are explained using plenty of concrete examples and
figures.

The SPMD (Single Program Multiple Data) model is the main topic throughout
this publication.

The basic architectures of parallel computers, models of parallel computing, and
concepts used in the MPI, such as communicator, process rank, collective
communication, point-to-point communication, blocking and non-blocking
communication, deadlocks, and derived data types are discussed.

Methods of parallelizing programs using distributed data to processes followed by
the superposition, pipeline, twisted decomposition, and prefix sum methods are
examined.

Individual algorithms and detailed code samples are provided. Several
programming strategies described are; two-dimensional finite difference method,
finite element method, LU factorization, SOR method, the Monte Carlo method,
and molecular dynamics. In addition, the MPMD (Multiple Programs Multiple
Data) model is discussed taking coupled analysis and a master/worker model as
examples. A section on Parallel ESSL is included.

A brief description of how to use Parallel Environment for AIX Version 2.4 and a
reference of the most frequently used MPI subroutines are enhanced with many
illustrations and sample programs to make it more readable than the MPI
Standard or the reference manual of each implementation of MPI.

We hope this publication will erase of the notion that MPI is too difficult, and will
provide an easy start for MPI beginners.

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from IBM Japan working at
the RS/6000 Technical Support Center, Tokyo.

Yukiya Aoyama has been involved in technical computing since he joined IBM
Japan in 1982. He has experienced vector tuning for 3090 VF, serial tuning for
RS/6000, and parallelization on RS/6000 SP. He holds a B.S. in physics from
Shimane University, Japan.

Jun Nakano is an IT Specialist from IBM Japan. From 1990 to 1994, he was with
the IBM Tokyo Research Laboratory and studied algorithms. Since 1995, he has
been involved in benchmarks of RS/6000 SP. He holds an M.S. in physics from
the University of Tokyo. He is interested in algorithms, computer architectures,
and operating systems. He is also a coauthor of the redbook, RS/6000 Scientific
and Technical Computing: POWER3 Introduction and Tuning Guide.
© Copyright IBM Corp. 1999 xiii

This project was coordinated by:

Scott Vetter
International Technical Support Organization, Austin Center

Thanks to the following people for their invaluable contributions to this project:

Anshul Gupta
IBM T. J. Watson Research Center

Danny Shieh
IBM Austin

Yoshinori Shimoda
IBM Japan

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO Redbook Evaluation” on page 221 to
the fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com/

• Send your comments in an internet note to redbook@us.ibm.com
xiv RS/6000 SP: Practical MPI Programming

Chapter 1. Introduction to Parallel Programming

This chapter provides brief descriptions of the architectures that support
programs running in parallel, the models of parallel programming, and an
example of parallel processing.

1.1 Parallel Computer Architectures

You can categorize the architecture of parallel computers in terms of two aspects:
whether the memory is physically centralized or distributed, and whether or not
the address space is shared. Table 1 provides the relationships of these
attributes.

Table 1. Categorization of Parallel Architectures

SMP (Symmetric Multiprocessor) architecture uses shared system resources
such as memory and I/O subsystem that can be accessed equally from all the
processors. As shown in Figure 1, each processor has its own cache which may
have several levels. SMP machines have a mechanism to maintain coherency of
data held in local caches. The connection between the processors (caches) and
the memory is built as either a bus or a crossbar switch. For example, the
POWER3 SMP node uses a bus, whereas the RS/6000 model S7A uses a
crossbar switch. A single operating system controls the SMP machine and it
schedules processes and threads on processors so that the load is balanced.

Figure 1. SMP Architecture

MPP (Massively Parallel Processors) architecture consists of nodes connected
by a network that is usually high-speed. Each node has its own processor,
memory, and I/O subsystem (see Figure 2 on page 2). The operating system is
running on each node, so each node can be considered a workstation. The
RS/6000 SP fits in this category. Despite the term massively, the number of
nodes is not necessarily large. In fact, there is no criteria. What makes the
situation more complex is that each node can be an SMP node (for example,
POWER3 SMP node) as well as a uniprocessor node (for example, 160 MHz
POWER2 Superchip node).

Shared Address Space Individual Address Space

Centralized memory SMP (Symmetric
Multiprocessor)

N/A

Distributed memory NUMA (Non-Uniform Memory
Access)

MPP (Massively Parallel
Processors)
© Copyright IBM Corp. 1999 1

Figure 2. MPP Architecture

NUMA (Non-Uniform Memory Access) architecture machines are built on a
similar hardware model as MPP, but it typically provides a shared address space
to applications using a hardware/software directory-based protocol that maintains
cache coherency. As in an SMP machine, a single operating system controls the
whole system. The memory latency varies according to whether you access local
memory directly or remote memory through the interconnect. Thus the name
non-uniform memory access. The RS/6000 series has not yet adopted this
architecture.

1.2 Models of Parallel Programming

The main goal of parallel programming is to utilize all the processors and
minimize the elapsed time of your program. Using the current software
technology, there is no software environment or layer that absorbs the difference
in the architecture of parallel computers and provides a single programming
model. So, you may have to adopt different programming models for different
architectures in order to balance performance and the effort required to program.

1.2.1 SMP Based
Multi-threaded programs are the best fit with SMP architecture because threads
that belong to a process share the available resources. You can either write a
multi-thread program using the POSIX threads library (pthreads) or let the
compiler generate multi-thread executables. Generally, the former option places
the burdeon on the programmer, but when done well, it provides good
performance because you have complete control over how the programs behave.
On the other hand, if you use the latter option, the compiler automatically
parallelizes certain types of DO loops, or else you must add some directives to
tell the compiler what you want it to do. However, you have less control over the
behavior of threads. For details about SMP features and thread coding
techniques using XL Fortran, see RS/6000 Scientific and Technical Computing:
POWER3 Introduction and Tuning Guide, SG24-5155.
2 RS/6000 SP: Practical MPI Programming

Figure 3. Single-Thread Process and Multi-Thread Process

In Figure 3, the single-thread program processes S1 through S2, where S1 and
S2 are inherently sequential parts and P1 through P4 can be processed in
parallel. The multi-thread program proceeds in the fork-join model. It first
processes S1, and then the first thread forks three threads. Here, the term fork is
used to imply the creation of a thread, not the creation of a process. The four
threads process P1 through P4 in parallel, and when finished they are joined to
the first thread. Since all the threads belong to a single process, they share the
same address space and it is easy to reference data that other threads have
updated. Note that there is some overhead in forking and joining threads.

1.2.2 MPP Based on Uniprocessor Nodes (Simple MPP)
If the address space is not shared among nodes, parallel processes have to
transmit data over an interconnecting network in order to access data that other
processes have updated. HPF (High Performance Fortran) may do the job of data
transmission for the user, but it does not have the flexibility that hand-coded
message-passing programs have. Since the class of problems that HPF resolves
is limited, it is not discussed in this publication.
Introduction to Parallel Programming 3

Figure 4. Message-Passing

Figure 4 illustrates how a message-passing program runs. One process runs on
each node and the processes communicate with each other during the execution
of the parallelizable part, P1-P4. The figure shows links between processes on
the adjacent nodes only, but each process communicates with all the other
processes in general. Due to the communication overhead, work load unbalance,
and synchronization, time spent for processing each of P1-P4 is generally longer
in the message-passing program than in the serial program. All processes in the
message-passing program are bound to S1 and S2.

1.2.3 MPP Based on SMP Nodes (Hybrid MPP)
An RS/6000 SP with SMP nodes makes the situation more complex. In the hybrid
architecture environment you have the following two options.

Multiple Single-Thread Processes per Node

In this model, you use the same parallel program written for simple MPP
computers. You just increase the number of processes according to how many
processors each node has. Processes still communicate with each other by
message-passing whether the message sender and receiver run on the same
node or on different nodes. The key for this model to be successful is that the
intranode message-passing is optimized in terms of communication latency
and bandwidth.
4 RS/6000 SP: Practical MPI Programming

Figure 5. Multiple Single-Thread Processes Per Node

Parallel Environment Version 2.3 and earlier releases only allow one process
to use the high-speed protocol (User Space protocol) per node. Therefore, you
have to use IP for multiple processes, which is slower than the User Space
protocol. In Parallel Environment Version 2.4, you can run up to four
processes using User Space protocol per node. This functional extension is
called MUSPPA (Multiple User Space Processes Per Adapter). For
communication latency and bandwidth, see the paragraph beginning with
“Performance Figures of Communication” on page 6.

One Multi-Thread Process Per Node

The previous model (multiple single-thread processes per node) uses the
same program written for simple MPP, but a drawback is that even two
processes running on the same node have to communicate through
message-passing rather than through shared memory or memory copy. It is
possible for a parallel run-time environment to have a function that
automatically uses shared memory or memory copy for intranode
communication and message-passing for internode communication. Parallel
Environment Version 2.4, however, does not have this automatic function yet.
Introduction to Parallel Programming 5

Figure 6. One Multi-Thread Process Per Node

To utilize the shared memory feature of SMP nodes, run one multi-thread
process on each node so that intranode communication uses shared memory
and internode communication uses message-passing. As for the multi-thread
coding, the same options described in 1.2.1, “SMP Based” on page 2 are
applicable (user-coded and compiler-generated). In addition, if you can
replace the parallelizable part of your program by a subroutine call to a
multi-thread parallel library, you do not have to use threads. In fact, Parallel
Engineering and Scientific Subroutine Library for AIX provides such libraries.

Performance Figures of Communication

Table 2 shows point-to-point communication latency and bandwidth of User
Space and IP protocols on POWER3 SMP nodes. The software used is AIX
4.3.2, PSSP 3.1, and Parallel Environment 2.4. The measurement was done
using a Pallas MPI Benchmark program. Visit
http://www.pallas.de/pages/pmb.htm for details.

Table 2. Latency and Bandwidth of SP Switch (POWER3 Nodes)

Protocol Location of two processes Latency Bandwidth

User Space On different nodes 22 sec 133 MB/sec

On the same node 37 sec 72 MB/sec

Further discussion of MPI programming using multiple threads is beyond the
scope of this publication.

Note

µ

µ

6 RS/6000 SP: Practical MPI Programming

Note that when you use User Space protocol, both latency and bandwidth of
intranode communication is not as good as internode communication. This is
partly because the intranode communication is not optimized to use memory
copy at the software level for this measurement. When using SMP nodes,
keep this in mind when deciding which model to use. If your program is not
multi-threaded and is communication-intensive, it is possible that the program
will run faster by lowering the degree of parallelism so that only one process
runs on each node neglecting the feature of multiple processors per node.

1.3 SPMD and MPMD

When you run multiple processes with message-passing, there are further
categorizations regarding how many different programs are cooperating in
parallel execution. In the SPMD (Single Program Multiple Data) model, there is
only one program and each process uses the same executable working on
different sets of data (Figure 7 (a)). On the other hand, the MPMD (Multiple
Programs Multiple Data) model uses different programs for different processes,
but the processes collaborate to solve the same problem. Most of the programs
discussed in this publication use the SPMD style. Typical usage of the MPMD
model can be found in the master/worker style of execution or in the coupled
analysis, which are described in 4.7, “MPMD Models” on page 137.

Figure 7. SPMD and MPMD

Figure 7 (b) shows the master/worker style of the MPMD model, where a.out is
the master program which dispatches jobs to the worker program, b.out. There
are several workers serving a single master. In the coupled analysis (Figure 7
(c)), there are several programs (a.out, b.out, and c.out), and each program does
a different task, such as structural analysis, fluid analysis, and thermal analysis.
Most of the time, they work independently, but once in a while, they exchange
data to proceed to the next time step.

IP On different nodes 159 sec 57 MB/sec

On the same node 119 sec 58 MB/sec

Protocol Location of two processes Latency Bandwidth

µ

µ

Introduction to Parallel Programming 7

In the following figure, the way an SPMD program works and why
message-passing is necessary for parallelization is introduced.

Figure 8. A Sequential Program

Figure 8 shows a sequential program that reads data from a file, does some
computation on the data, and writes the data to a file. In this figure, white circles,
squares, and triangles indicate the initial values of the elements, and black
objects indicate the values after they are processed. Remember that in the SPMD
model, all the processes execute the same program. To distinguish between
processes, each process has a unique integer called rank. You can let processes
behave differently by using the value of rank. Hereafter, the process whose rank
is r is referred to as process r. In the parallelized program in Figure 9 on page 9,
there are three processes doing the job. Each process works on one third of the
data, therefore this program is expected to run three times faster than the
sequential program. This is the very benefit that you get from parallelization.
8 RS/6000 SP: Practical MPI Programming

Figure 9. An SPMD Program

In Figure 9, all the processes read the array in Step 1 and get their own rank in
Step 2. In Steps 3 and 4, each process determines which part of the array it is in
charge of, and processes that part. After all the processes have finished in Step
4, none of the processes have all of the data, which is an undesirable side effect
of parallelization. It is the role of message-passing to consolidate the processes
separated by the parallelization. Step 5 gathers all the data to a process and that
process writes the data to the output file.

To summarize, keep the following two points in mind:

• The purpose of parallelization is to reduce the time spent for computation.
Ideally, the parallel program is p times faster than the sequential program,
where p is the number of processes involved in the parallel execution, but this
is not always achievable.

• Message-passing is the tool to consolidate what parallelization has separated.
It should not be regarded as the parallelization itself.

The next chapter begins a voyage into the world of parallelization.
Introduction to Parallel Programming 9

10 RS/6000 SP: Practical MPI Programming

Chapter 2. Basic Concepts of MPI

In this chapter, the basic concepts of the MPI such as communicator,
point-to-point communication, collective communication, blocking/non-blocking
communication, deadlocks, and derived data types are described. After reading
this chapter, you will understand how data is transmitted between processes in
the MPI environment, and you will probably find it easier to write a program using
MPI rather than TCP/IP.

2.1 What is MPI?

The Message Passing Interface (MPI) is a standard developed by the Message
Passing Interface Forum (MPIF). It specifies a portable interface for writing
message-passing programs, and aims at practicality, efficiency, and flexibility at
the same time. MPIF, with the participation of more than 40 organizations, started
working on the standard in 1992. The first draft (Version 1.0), which was
published in 1994, was strongly influenced by the work at the IBM T. J. Watson
Research Center. MPIF has further enhanced the first version to develop a
second version (MPI-2) in 1997. The latest release of the first version (Version
1.2) is offered as an update to the previous release and is contained in the MPI-2
document. For details about MPI and MPIF, visit http://www.mpi-forum.org/. The
design goal of MPI is quoted from “MPI: A Message-Passing Interface Standard
(Version 1.1)” as follows:

• Design an application programming interface (not necessarily for compilers or
a system implementation library).

• Allow efficient communication: Avoid memory-to-memory copying and allow
overlap of computation and communication and offload to communication
co-processor, where available.

• Allow for implementations that can be used in a heterogeneous environment.

• Allow convenient C and Fortran 77 bindings for the interface.

• Assume a reliable communication interface: the user need not cope with
communication failures. Such failures are dealt with by the underlying
communication subsystem.

• Define an interface that is not too different from current practice, such as
PVM, NX, Express, p4, etc., and provides extensions that allow greater
flexibility.

• Define an interface that can be implemented on many vendor’s platforms, with
no significant changes in the underlying communication and system software.

• Semantics of the interface should be language independent.

• The interface should be designed to allow for thread-safety.

The standard includes:

• Point-to-point communication

• Collective operations

• Process groups

• Communication contexts

• Process topologies
© Copyright IBM Corp. 1999 11

• Bindings for Fortran 77 and C

• Environmental management and inquiry

• Profiling interface

The IBM Parallel Environment for AIX (PE) Version 2 Release 3 accompanying
with Parallel System Support Programs (PSSP) 2.4 supports MPI Version 1.2,
and the IBM Parallel Environment for AIX Version 2 Release 4 accompanying
with PSSP 3.1 supports MPI Version 1.2 and some portions of MPI-2. The MPI
subroutines supported by PE 2.4 are categorized as follows:

Table 3. MPI Subroutines Supported by PE 2.4

You do not need to know all of these subroutines. When you parallelize your
programs, only about a dozen of the subroutines may be needed. Appendix B,
“Frequently Used MPI Subroutines Illustrated” on page 161 describes 33
frequently used subroutines with sample programs and illustrations. For detailed
descriptions of MPI subroutines, see MPI Programming and Subroutine
Reference Version 2 Release 4, GC23-3894.

2.2 Environment Management Subroutines

This section shows what an MPI program looks like and explains how it is
executed on RS/6000 SP. In the following program, each process writes the
number of the processes and its rank to the standard output. Line numbers are
added for the explanation.

env.f

1 PROGRAM env
2 INCLUDE ’mpif.h’
3 CALL MPI_INIT(ierr)
4 CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
5 CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
6 PRINT *,’nprocs =’,nprocs,’myrank =’,myrank
7 CALL MPI_FINALIZE(ierr)
8 END

Type Subroutines Number

Point-to-Point MPI_SEND, MPI_RECV, MPI_WAIT,... 35

Collective Communication MPI_BCAST, MPI_GATHER, MPI_REDUCE,... 30

Derived Data Type MPI_TYPE_CONTIGUOUS,
MPI_TYPE_COMMIT,...

21

Topology MPI_CART_CREATE, MPI_GRAPH_CREATE,... 16

Communicator MPI_COMM_SIZE, MPI_COMM_RANK,... 17

Process Group MPI_GROUP_SIZE, MPI_GROUP_RANK,... 13

Environment Management MPI_INIT, MPI_FINALIZE, MPI_ABORT,... 18

File MPI_FILE_OPEN, MPI_FILE_READ_AT,... 19

Information MPI_INFO_GET, MPI_INFO_SET,... 9

IBM Extension MPE_IBCAST, MPE_IGATHER,... 14
12 RS/6000 SP: Practical MPI Programming

Note that the program is executed in the SPMD (Single Program Multiple Data)
model. All the nodes that run the program, therefore, need to see the same
executable file with the same path name, which is either shared among nodes by
NFS or other network file systems, or is copied to each node’s local disk.

Line 2 includes mpif.h, which defines MPI-related parameters such as
MPI_COMM_WORLD and MPI_INTEGER. For example, MPI_INTEGER is an
integer whose value is 18 in Parallel Environment for AIX. All Fortran procedures
that use MPI subroutines have to include this file. Line 3 calls MPI_INIT for
initializing an MPI environment. MPI_INIT must be called once and only once
before calling any other MPI subroutines. In Fortran, the return code of every MPI
subroutine is given in the last argument of its subroutine call. If an MPI subroutine
call is done successfully, the return code is 0; otherwise, a non zero value is
returned. In Parallel Environment for AIX, without any user-defined error handler,
a parallel process ends abnormally if it encounters an MPI error: PE prints error
messages to the standard error output and terminates the process. Usually, you
do not check the return code each time you call MPI subroutines. The subroutine
MPI_COMM_SIZE in line 4 returns the number of processes belonging to the
communicator specified in the first argument. A communicator is an identifier
associated with a group of processes. MPI_COMM_WORLD defined in mpif.h
represents the group consisting of all the processes participating in the parallel
job. You can create a new communicator by using the subroutine
MPI_COMM_SPLIT. Each process in a communicator has its unique rank, which
is in the range 0..size-1 where size is the number of processes in that
communicator. A process can have different ranks in each communicator that the
process belongs to. MPI_COMM_RANK in line 5 returns the rank of the process
within the communicator given as the first argument. In line 6, each process prints
the number of all processes and its rank, and line 7 calls MPI_FINALIZE.
MPI_FINALIZE terminates MPI processing and no other MPI call can be made
afterwards. Ordinary Fortran code can follow MPI_FINALIZE. For details of MPI
subroutines that appeared in this sample program, see B.1, “Environmental
Subroutines” on page 161.

Suppose you have already decided upon the node allocation method and it is
configured appropriately. (Appendix A, “How to Run Parallel Jobs on RS/6000
SP” on page 155 shows you the detail.) Now you are ready to compile and
execute the program as follows. (Compile options are omitted.)

$ mpxlf env.f
** env === End of Compilation 1 ===
1501-510 Compilation successful for file env.f.
$ export MP_STDOUTMODE=ordered
$ export MP_LABELIO=yes
$ a.out -procs 3

0: nprocs = 3 myrank = 0
1: nprocs = 3 myrank = 1
2: nprocs = 3 myrank = 2

For compiling and linking MPI programs, use the mpxlf command, which takes
care of the paths for include files and libraries for you. For example, mpif.h is
located at /usr/lpp/ppe.poe/include, but you do not have to care about it. The
environment variables MP_STDOUTMODE and MP_LABELIO control the stdout
and stderr output from the processes. With the setting above, the output is sorted
by increasing order of ranks, and the rank number is added in front of the output
from each process.
Basic Concepts of MPI 13

Although each process executes the same program in the SPMD model, you can
make the behavior of each process different by using the value of the rank. This
is where the parallel speed-up comes from; each process can operate on a
different part of the data or the code concurrently.

2.3 Collective Communication Subroutines

Collective communication allows you to exchange data among a group of
processes. The communicator argument in the collective communication
subroutine calls specifies which processes are involved in the communication. In
other words, all the processes belonging to that communicator must call the same
collective communication subroutine with matching arguments. There are several
types of collective communications, as illustrated below.

Figure 10. Patterns of Collective Communication

Some of the patterns shown in Figure 10 have a variation for handling the case
where the length of data for transmission is different among processes. For
example, you have subroutine MPI_GATHERV corresponding to MPI_GATHER.
14 RS/6000 SP: Practical MPI Programming

Table 4 shows 16 MPI collective communication subroutines that are divided into
four categories.

Table 4. MPI Collective Communication Subroutines

The subroutines printed in boldface are used most frequently. MPI_BCAST,
MPI_GATHER, and MPI_REDUCE are explained as representatives of the main
three categories.

All of the MPI collective communication subroutines are blocking. For the
explanation of blocking and non-blocking communication, see 2.4.1, “Blocking
and Non-Blocking Communication” on page 23. IBM extensions to MPI provide
non-blocking collective communication. Subroutines belonging to categories 1, 2,
and 3 have IBM extensions corresponding to non-blocking subroutines such as
MPE_IBCAST, which is a non-blocking version of MPI_BCAST.

2.3.1 MPI_BCAST
The subroutine MPI_BCAST broadcasts the message from a specific process
called root to all the other processes in the communicator given as an argument.
(See also B.2.1, “MPI_BCAST” on page 163.)

bcast.f

1 PROGRAM bcast
2 INCLUDE ’mpif.h’
3 INTEGER imsg(4)
4 CALL MPI_INIT(ierr)
5 CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
6 CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
7 IF (myrank==0) THEN
8 DO i=1,4
9 imsg(i) = i

10 ENDDO
11 ELSE
12 DO i=1,4
13 imsg(i) = 0
14 ENDDO
15 ENDIF
16 PRINT *,’Before:’,imsg
17 CALL MP_FLUSH(1)
18 CALL MPI_BCAST(imsg, 4, MPI_INTEGER,
19 & 0, MPI_COMM_WORLD, ierr)
20 PRINT *,’After :’,imsg
21 CALL MPI_FINALIZE(ierr)
22 END

Category Subroutines

1. One buffer MPI_BCAST

2. One send buffer and
one receive buffer

MPI_GATHER, MPI_SCATTER, MPI_ALLGATHER,
MPI_ALLTOALL, MPI_GATHERV, MPI_SCATTERV,
MPI_ALLGATHERV, MPI_ALLTOALLV

3. Reduction MPI_REDUCE, MPI_ALLREDUCE, MPI_SCAN,
MPI_REDUCE_SCATTER

4. Others MPI_BARRIER, MPI_OP_CREATE, MPI_OP_FREE
Basic Concepts of MPI 15

In bcast.f, the process with rank=0 is chosen as the root. The root stuffs an
integer array imsg with data, while the other processes initialize it with zeroes.
MPI_BCAST is called in lines 18 and 19, which broadcasts four integers from the
root process (its rank is 0, the fourth argument) to the other processes in the
communicator MPI_COMM_WORLD. The triplet (imsg, 4, MPI_INTEGER) specifies
the address of the buffer, the number of elements, and the data type of the
elements. Note the different role of imsg in the root process and in the other
processes. On the root process, imsg is used as the send buffer, whereas on
non-root processes, it is used as the receive buffer. MP_FLUSH in line 17 flushes
the standard output so that the output can be read easily. MP_FLUSH is not an
MPI subroutine and is only included in IBM Parallel Environment for AIX. The
program is executed as follows:

$ a.out -procs 3
0: Before: 1 2 3 4
1: Before: 0 0 0 0
2: Before: 0 0 0 0
0: After : 1 2 3 4
1: After : 1 2 3 4
2: After : 1 2 3 4

Figure 11. MPI_BCAST

Descriptions of MPI data types and communication buffers follow.

MPI subroutines recognize data types as specified in the MPI standard. The
following is a description of MPI data types in the Fortran language bindings.

Table 5. MPI Data Types (Fortran Bindings)

MPI Data Types Description (Fortran Bindings)

MPI_INTEGER1 1-byte integer

MPI_INTEGER2 2-byte integer

MPI_INTEGER4, MPI_INTEGER 4-byte integer

MPI_REAL4, MPI_REAL 4-byte floating point

MPI_REAL8, MPI_DOUBLE_PRECISION 8-byte floating point

MPI_REAL16 16-byte floating point

MPI_COMPLEX8, MPI_COMPLEX 4-byte float real, 4-byte float imaginary

MPI_COMPLEX16,
MPI_DOUBLE_COMPLEX

8-byte float real, 8-byte float imaginary
16 RS/6000 SP: Practical MPI Programming

You can combine these data types to make more complex data types called
derived data types. For details, see 2.5, “Derived Data Types” on page 28.

As line 18 of bcast.f shows, the send buffer of the root process and the receive
buffer of non-root processes are referenced by the same name. If you want to use
a different buffer name in the receiving processes, you can rewrite the program
as follows:

IF (myrank==0) THEN
CALL MPI_BCAST(imsg, 4, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)

ELSE
CALL MPI_BCAST(jmsg, 4, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)

ENDIF

In this case, the contents of imsg of process 0 are sent to jmsg of the other
processes. Make sure that the amount of data transmitted matches between the
sending process and the receiving processes.

2.3.2 MPI_GATHER
The subroutine MPI_GATHER transmits data from all the processes in the
communicator to a single receiving process. (See also B.2.5, “MPI_GATHER” on
page 169 and B.2.6, “MPI_GATHERV” on page 171.)

gather.f

1 PROGRAM gather
2 INCLUDE ’mpif.h’
3 INTEGER irecv(3)
4 CALL MPI_INIT(ierr)
5 CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
6 CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
7 isend = myrank + 1
8 CALL MPI_GATHER(isend, 1, MPI_INTEGER,
9 & irecv, 1, MPI_INTEGER,

10 & 0, MPI_COMM_WORLD, ierr)
11 IF (myrank==0) THEN
12 PRINT *,’irecv =’,irecv
13 ENDIF
14 CALL MPI_FINALIZE(ierr)
15 END

In this example, the values of isend of processes 0, 1, and 2 are 1, 2, and 3
respectively. The call of MPI_GATHER in lines 8-10 gathers the value of isend to
a receiving process (process 0) and the data received are copied to an integer
array irecv in increasing order of rank. In lines 8 and 9, the triplets (isend, 1,

MPI_COMPLEX32 16-byte float real, 16-byte float imaginary

MPI_LOGICAL1 1-byte logical

MPI_LOGICAL2 2-byte logical

MPI_LOGICAL4, MPI_LOGICAL 4-byte logical

MPI_CHARACTER 1-byte character

MPI_BYTE, MPI_PACKED N/A

MPI Data Types Description (Fortran Bindings)
Basic Concepts of MPI 17

MPI_INTEGER) and (irecv, 1, MPI_INTEGER) specify the address of the send/receive
buffer, the number of elements, and the data type of the elements. Note that in
line 9, the number of elements received from each process by the root process (in
this case, 1) is given as an argument. This is not the total number of elements
received at the root process.

$ a.out -procs 3
0: irecv = 1 2 3

Figure 12. MPI_GATHER

In MPI-2, this restriction is partly removed: You can use the send buffer as the
receive buffer by specifying MPI_IN_PLACE as the first argument of
MPI_GATHER at the root process. In such a case, sendcount and sendtype are
ignored at the root process, and the contribution of the root to the gathered array
is assumed to be in the correct place already in the receive buffer.

When you use MPI_GATHER, the length of the message sent from each process
must be the same. If you want to gather different lengths of data, use
MPI_GATHERV instead.

The memory locations of the send buffer (isend) and the receive buffer (irecv)
must not overlap. The same restriction applies to all the collective
communication subroutines that use send and receive buffers (categories 2
and 3 in Table 4 on page 15).

Important
18 RS/6000 SP: Practical MPI Programming

Figure 13. MPI_GATHERV

As Figure 13 shows, MPI_GATHERV gathers messages with different sizes and
you can specify the displacements that the gathered messages are placed in the
receive buffer. Like MPI_GATHER, subroutines MPI_SCATTER,
MPI_ALLGATHER, and MPI_ALLTOALL have corresponding “V” variants,
namely, MPI_SCATTERV, MPI_ALLGATHERV, and MPI_ALLTOALLV.

2.3.3 MPI_REDUCE
The subroutine MPI_REDUCE does reduction operations such as summation of
data distributed over processes, and brings the result to the root process. (See
also B.2.11, “MPI_REDUCE” on page 180.)

reduce.f

1 PROGRAM reduce
2 INCLUDE ’mpif.h’
3 REAL a(9)
4 CALL MPI_INIT(ierr)
5 CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
6 CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
7 ista = myrank * 3 + 1
8 iend = ista + 2
9 DO i=ista,iend

10 a(i) = i
11 ENDDO
12 sum = 0.0
13 DO i=ista,iend
Basic Concepts of MPI 19

14 sum = sum + a(i)
15 ENDDO
16 CALL MPI_REDUCE(sum, tmp, 1, MPI_REAL, MPI_SUM, 0,
17 & MPI_COMM_WORLD, ierr)
18 sum = tmp
19 IF (myrank==0) THEN
20 PRINT *,’sum =’,sum
21 ENDIF
22 CALL MPI_FINALIZE(ierr)
23 END

The program above calculates the sum of a floating-point array a(i) (i=1..9). It is
assumed that there are three processes involved in the computation, and each
process is in charge of one third of the array a(). In lines 13-15, a partial sum
(sum) is calculated by each process, and in lines 16-17, these partial sums are
added and the result is sent to the root process (process 0). Instead of nine
additions, each process does three additions plus one global sum. As is the case
with MPI_GATHER, the send buffer and the receive buffer cannot overlap in
memory. Therefore, another variable, tmp, had to be used to store the global sum
of sum. The fifth argument of MPI_REDUCE, MPI_SUM, specifies which reduction
operation to use, and the data type is specified as MPI_REAL. The MPI provides
several common operators by default, where MPI_SUM is one of them, which are
defined in mpif.h. See Table 6 on page 21 for the list of operators. The following
output and figure show how the program is executed.

$ a.out -procs 3
0: sum = 45.00000000

Figure 14. MPI_REDUCE (MPI_SUM)

When you use MPI_REDUCE, be aware of rounding errors that MPI_REDUCE
may produce. In floating-point computations with finite accuracy, you have

in general. In reduce.f, you wanted to calculate the sum of
the array a(). But since you calculate the partial sum first, the result may be
different from what you get using the serial program.

Sequential computation:

a(1) + a(2) + a(3) + a(4) + a(5) + a(6) + a(7) + a(8) + a(9)

a b+() c a b c+()+≠+
20 RS/6000 SP: Practical MPI Programming

Parallel computation:

[a(1) + a(2) + a(3)] + [a(4) + a(5) + a(6)] + [a(7) + a(8) + a(9)]

Moreover, in general, you need to understand the order that the partial sums are
added. Fortunately, in PE, the implementation of MPI_REDUCE is such that you
always get the same result if you execute MPI_REDUCE with the same
arguments using the same number of processes.

Table 6. Predefined Combinations of Operations and Data Types

MPI_MAXLOC obtains the value of the maximum element of an array and its
location at the same time. If you are familiar with XL Fortran intrinsic functions,
MPI_MAXLOC can be understood as MAXVAL and MAXLOC combined. The data
type MPI_2INTEGER in Table 6 means two successive integers. In the Fortran
bindings, use a one-dimensional integer array with two elements for this data
type. For real data, MPI_2REAL is used, where the first element stores the
maximum or the minimum value and the second element is its location converted
to real. The following is a serial program that finds the maximum element of an
array and its location.

PROGRAM maxloc_s
INTEGER n(9)
DATA n /12, 15, 2, 20, 8, 3, 7, 24, 52/
imax = -999
DO i = 1, 9

IF (n(i) > imax) THEN
imax = n(i)
iloc = i

ENDIF
ENDDO
PRINT *, ’Max =’, imax, ’Location =’, iloc
END

The preceding program is parallelized for three-process execution as follows:

PROGRAM maxloc_p
INCLUDE ’mpif.h’
INTEGER n(9)

Operation Data type

MPI_SUM (sum),
MPI_PROD (product)

MPI_INTEGER, MPI_REAL,
MPI_DOUBLE_PRECISION, MPI_COMPLEX

MPI_MAX (maximum),
MPI_MIN (minimum)

MPI_INTEGER, MPI_REAL,
MPI_DOUBLE_PRECISION

MPI_MAXLOC (max value
and location),
MPI_MINLOC (min value
and location)

MPI_2INTEGER,
MPI_2REAL,
MPI_2DOUBLE_PRECISION

MPI_LAND (logical AND),
MPI_LOR (logical OR),
MPI_LXOR (logical XOR)

MPI_LOGICAL

MPI_BAND (bitwise AND),
MPI_BOR (bitwise OR),
MPI_BXOR (bitwise XOR)

MPI_INTEGER,
MPI_BYTE
Basic Concepts of MPI 21

INTEGER isend(2), irecv(2)
DATA n /12, 15, 2, 20, 8, 3, 7, 24, 52/
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
ista = myrank * 3 + 1
iend = ista + 2
imax = -999
DO i = ista, iend

IF (n(i) > imax) THEN
imax = n(i)
iloc = i

ENDIF
ENDDO
isend(1) = imax
isend(2) = iloc
CALL MPI_REDUCE(isend, irecv, 1, MPI_2INTEGER,

& MPI_MAXLOC, 0, MPI_COMM_WORLD, ierr)
IF (myrank == 0) THEN

PRINT *, ’Max =’, irecv(1), ’Location =’, irecv(2)
ENDIF
CALL MPI_FINALIZE(ierr)
END

Note that local maximum (imax) and its location (iloc) is copied to an array
isend(1:2) before reduction.

Figure 15. MPI_REDUCE (MPI_MAXLOC)

The output of the program is shown below.

$ a.out -procs 3
0: Max = 52 Location = 9

If none of the operations listed in Table 6 on page 21 meets your needs, you can
define a new operation with MPI_OP_CREATE. Appendix B.2.15,
“MPI_OP_CREATE” on page 187 shows how to define “MPI_SUM” for
MPI_DOUBLE_COMPLEX and “MPI_MAXLOC” for a two-dimensional array.
22 RS/6000 SP: Practical MPI Programming

2.4 Point-to-Point Communication Subroutines

When you use point-to-point communication subroutines, you should know about
the basic notions of blocking and non-blocking communication, as well as the
issue of deadlocks.

2.4.1 Blocking and Non-Blocking Communication
Even when a single message is sent from process 0 to process 1, there are
several steps involved in the communication. At the sending process, the
following events occur one after another.

1. The data is copied to the user buffer by the user.

2. The user calls one of the MPI send subroutines.

3. The system copies the data from the user buffer to the system buffer.

4. The system sends the data from the system buffer to the destination
process.

The term user buffer means scalar variables or arrays used in the program. The
following occurs during the receiving process:

1. The user calls one of the MPI receive subroutines.

2. The system receives the data from the source process and copies it to the
system buffer.

3. The system copies the data from the system buffer to the user buffer.

4. The user uses the data in the user buffer.

Figure 16 on page 24 illustrates the above steps.
Basic Concepts of MPI 23

Figure 16. Data Movement in the Point-to-Point Communication

As Figure 16 shows, when you send data, you cannot or should not reuse your
buffer until the system copies data from user buffer to the system buffer. Also
when you receive data, the data is not ready until the system completes copying
data from a system buffer to a user buffer. In MPI, there are two modes of
communication: blocking and non-blocking. When you use blocking
communication subroutines such as MPI_SEND and MPI_RECV, the program will
not return from the subroutine call until the copy to/from the system buffer has
finished. On the other hand, when you use non-blocking communication
subroutines such as MPI_ISEND and MPI_IRECV, the program immediately
returns from the subroutine call. That is, a call to a non-blocking subroutine only
indicates that the copy to/from the system buffer is initiated and it is not assured
that the copy has completed. Therefore, you have to make sure of the completion
of the copy by MPI_WAIT. If you use your buffer before the copy completes,
incorrect data may be copied to the system buffer (in case of non-blocking send),
or your buffer does not contain what you want (in case of non-blocking receive).
For the usage of point-to-point subroutines, see B.3, “Point-to-Point
Communication Subroutines” on page 189.

Why do you use non-blocking communication despite its complexity? Because
non-blocking communication is generally faster than its corresponding blocking
communication. Some hardware may have separate co-processors that are
24 RS/6000 SP: Practical MPI Programming

dedicated to communication. On such hardware, you may be able to hide the
latency by computation. In other words, you can do other computations while the
system is copying data back and forth between user and system buffers.

2.4.2 Unidirectional Communication
When you send a message from process 0 to process 1, there are four
combinations of MPI subroutines to choose from depending on whether you use a
blocking or non-blocking subroutine for sending or receiving data.

Figure 17. Point-to-Point Communication

Written explicitly, the four combinations are the following:

Blocking send and blocking receive

IF (myrank==0) THEN
CALL MPI_SEND(sendbuf, icount, MPI_REAL8, 1, itag, MPI_COMM_WORLD, ierr)

ELSEIF (myrank==1) THEN
CALL MPI_RECV(recvbuf, icount, MPI_REAL8, 0, itag, MPI_COMM_WORLD, istatus, ierr)

ENDIF

Non-blocking send and blocking receive

IF (myrank==0) THEN
CALL MPI_ISEND(sendbuf, icount, MPI_REAL8, 1, itag, MPI_COMM_WORLD, ireq, ierr)
CALL MPI_WAIT(ireq, istatus, ierr)

ELSEIF (myrank==1) THEN
CALL MPI_RECV(recvbuf, icount, MPI_REAL8, 0, itag, MPI_COMM_WORLD, istatus, ierr)

ENDIF

Blocking send and non-blocking receive

IF (myrank==0) THEN
CALL MPI_SEND(sendbuf, icount, MPI_REAL8, 1, itag, MPI_COMM_WORLD, ierr)

ELSEIF (myrank==1) THEN
CALL MPI_IRECV(recvbuf, icount, MPI_REAL8, 0, itag, MPI_COMM_WORLD, ireq, ierr)
CALL MPI_WAIT(ireq, istatus, ierr)

ENDIF

Non-blocking send and non-blocking receive

IF (myrank==0) THEN
CALL MPI_ISEND(sendbuf, icount, MPI_REAL8, 1, itag, MPI_COMM_WORLD, ireq, ierr)

ELSEIF (myrank==1) THEN
CALL MPI_IRECV(recvbuf, icount, MPI_REAL8, 0, itag, MPI_COMM_WORLD, ireq, ierr)

ENDIF
CALL MPI_WAIT(ireq, istatus, ierr)

Note that you can place MPI_WAIT anywhere after the call of non-blocking
subroutine and before reuse of the buffer.
Basic Concepts of MPI 25

2.4.3 Bidirectional Communication
When two processes need to exchange data with each other, you have to be
careful about deadlocks. When a deadlock occurs, processes involved in the
deadlock will not proceed any further. Deadlocks can take place either due to the
incorrect order of send and receive, or due to the limited size of the system buffer.
In Figure 18, process 0 and process 1 call the send subroutine once and the
receive subroutine once.

Figure 18. Duplex Point-to-Point Communication

There are essentially three cases depending on the order of send and receive
subroutines called by both processes.

Case 1 Both processes call the send subroutine first, and then receive.

Case 2 Both processes call the receive subroutine first, and then send.

Case 3 One process calls send and receive subroutines in this order, and the
other calls in the opposite order.

For each case, there are further options based on your use of blocking or
non-blocking subroutines.

Case 1. Send first and then receive

Consider the following code:

IF (myrank==0) THEN
CALL MPI_SEND(sendbuf, ...)
CALL MPI_RECV(recvbuf, ...)

ELSEIF (myrank==1) THEN
CALL MPI_SEND(sendbuf, ...)
CALL MPI_RECV(recvbuf, ...)

ENDIF

Remember that the program returns from MPI_SEND when the copy from
sendbuf to the system buffer has finished. As long as the system buffer is
larger than sendbuf, the program ends normally. What if the system buffer is
not large enough to hold all the data in sendbuf? Process 1 is supposed to
receive data from process 0, and that part of process 0’s system buffer that
has been received by process 1 can be reused for other data. Then the
uncopied data fills up this space. This cycle repeats until all the data in sendbuf

of process 0 has copied to the system buffer. And only at that time, the
program returns from MPI_SEND. In the previous program example, process
1 does the same thing as process 0: it waits for process 0 to receive the data.
26 RS/6000 SP: Practical MPI Programming

However process 0 does not reach the MPI_RECV statement until process 1
receives data, which leads to a deadlock. Since MPI_ISEND immediately
followed by MPI_WAIT is logically equivalent to MPI_SEND, the following
code also gives rise to a deadlock if sendbuf is larger than the system buffer.
The situation does not change if you use MPI_IRECV instead of MPI_RECV.

IF (myrank==0) THEN
CALL MPI_ISEND(sendbuf, ..., ireq, ...)
CALL MPI_WAIT(ireq, ...)
CALL MPI_RECV(recvbuf, ...)

ELSEIF (myrank==1) THEN
CALL MPI_ISEND(sendbuf, ..., ireq, ...)
CALL MPI_WAIT(ireq, ...)
CALL MPI_RECV(recvbuf, ...)

ENDIF

On the other hand, the following code is free from deadlock because the
program immediately returns from MPI_ISEND and starts receiving data from
the other process. In the meantime, data transmission is completed and the
calls of MPI_WAIT for the completion of send at both processes do not lead to
a deadlock.

IF (myrank==0) THEN
CALL MPI_ISEND(sendbuf, ..., ireq, ...)
CALL MPI_RECV(recvbuf, ...)
CALL MPI_WAIT(ireq, ...)

ELSEIF (myrank==1) THEN
CALL MPI_ISEND(sendbuf, ..., ireq, ...)
CALL MPI_RECV(recvbuf, ...)
CALL MPI_WAIT(ireq, ...)

ENDIF

Case 2. Receive first and then send

The following code leads to a deadlock regardless of how much system buffer
you have.

IF (myrank==0) THEN
CALL MPI_RECV(recvbuf, ...)
CALL MPI_SEND(sendbuf, ...)

ELSEIF (myrank==1) THEN
CALL MPI_RECV(recvbuf, ...)
CALL MPI_SEND(sendbuf, ...)

ENDIF

If you use MPI_ISEND instead of MPI_SEND, deadlock still occurs. On the
other hand, the following code can be safely executed.

IF (myrank==0) THEN
CALL MPI_IRECV(recvbuf, ..., ireq, ...)
CALL MPI_SEND(sendbuf, ...)
CALL MPI_WAIT(ireq, ...)

ELSEIF (myrank==1) THEN
CALL MPI_IRECV(recvbuf, ..., ireq, ...)
CALL MPI_SEND(sendbuf, ...)
CALL MPI_WAIT(ireq, ...)

ENDIF
Basic Concepts of MPI 27

Case 3. One process sends and receives; the other receives and sends

It is always safe to order the calls of MPI_(I)SEND and MPI_(I)RECV so that a
send subroutine call at one process and a corresponding receive subroutine
call at the other process appear in matching order.

IF (myrank==0) THEN
CALL MPI_SEND(sendbuf, ...)
CALL MPI_RECV(recvbuf, ...)

ELSEIF (myrank==1) THEN
CALL MPI_RECV(recvbuf, ...)
CALL MPI_SEND(sendbuf, ...)

ENDIF

In this case, you can use either blocking or non-blocking subroutines.

Considering the previous options, performance, and the avoidance of deadlocks,
it is recommended to use the following code.

IF (myrank==0) THEN
CALL MPI_ISEND(sendbuf, ..., ireq1, ...)
CALL MPI_IRECV(recvbuf, ..., ireq2, ...)

ELSEIF (myrank==1) THEN
CALL MPI_ISEND(sendbuf, ..., ireq1, ...)
CALL MPI_IRECV(recvbuf, ..., ireq2, ...)

ENDIF
CALL MPI_WAIT(ireq1, ...)
CALL MPI_WAIT(ireq2, ...)

2.5 Derived Data Types

As will be discussed in 3.1, “What is Parallelization?” on page 41, if the total
amount of data transmitted between two processes is the same, you should
transmit it a fewer number of times. Suppose you want to send non-contiguous
data to another process. For the purpose of a fewer number of data
transmissions, you can first copy the non-contiguous data to a contiguous buffer,
and then send it at one time. On the receiving process, you may have to unpack
the data and copy it to proper locations. This procedure may look cumbersome,
but, MPI provides mechanisms, called derived data types, to specify more
general, mixed, and non-contiguous data. While it is convenient, the data
transmissions using derived data types might result in lower performance than
the manual coding of packing the data, transmitting, and unpacking. For this
reason, when you use derived data types, be aware of the performance impact.

2.5.1 Basic Usage of Derived Data Types
Suppose you want to send array elements a(4), a(5), a(7), a(8), a(10) and
a(11) to another process. If you define a derived data type itype1 as shown in
Figure 19 on page 29, just send one data of type itype1 starting at a(4). In this
figure, empty slots mean that they are neglected in data transmission.
Alternatively, you can send three data of type itype2 starting at a(4).
28 RS/6000 SP: Practical MPI Programming

Figure 19. Non-Contiguous Data and Derived Data Types

If you are sending to process idst, the actual code will either look like:

CALL MPI_SEND(a(4), 1, itype1, idst, itag, MPI_COMM_WORLD, ierr)

or

CALL MPI_SEND(a(4), 3, itype2, idst, itag, MPI_COMM_WORLD, ierr)

Now, the construction of these complex data types is examined. (See also B.4,
“Derived Data Types” on page 197.)

Figure 20. MPI_TYPE_CONTIGUOUS

First, MPI_TYPE_CONTIGUOUS is used to define a data type representing the
contiguous occurrence of an existing data type, which can be either a derived
data type or a basic MPI data type such as MPI_INTEGER or MPI_REAL.

Figure 21. MPI_TYPE_VECTOR/MPI_TYPE_HVECTOR

By using MPI_TYPE_(H)VECTOR, you can repeat an existing data type by
placing blanks in between.
Basic Concepts of MPI 29

Figure 22. MPI_TYPE_STRUCT

MPI_TYPE_STRUCT allows you to combine multiple data types into one. When
you want to put empty slots at the beginning or at the end of the new data type,
put one object of MPI_LB or MPI_UB in calling MPI_TYPE_STRUCT. These
pseudo data types occupy no space, that is, the size of MPI_LB and MPI_UB is
zero.

After you have defined a new data type, register the new data type by
MPI_TYPE_COMMIT.

2.5.2 Subroutines to Define Useful Derived Data Types
In parallelizing programs, you often need to send and receive elements of a
submatrix that are not contiguous in memory. This section provides four utility
subroutines to define the most typical derived data types that you might want to
use in your programs. These subroutines are not part of the MPI library and are
not supported by IBM.

Figure 23. A Submatrix for Transmission
30 RS/6000 SP: Practical MPI Programming

Suppose you want to send data in the shaded region in Figure 23 on page 30. By
using the utility subroutine para_type_block2a or para_type_block2 described
below, the code becomes very neat:

CALL para_type_block2a(2, 7, 2, 5, MPI_REAL, itype)
CALL MPI_SEND(a(3,1), 1, itype, idst, itag, MPI_COMM_WORLD, ierr)

or

CALL para_type_block2(2, 7, 0, 3, 4, 1, 5, MPI_REAL, itype2)
CALL MPI_SEND(a, 1, itype2, idst, itag, MPI_COMM_WORLD, ierr)

The meanings of parameters are clarified in the following sections. The source
code for these subroutines is also included, as well as three dimensional
versions. When you use the data type defined by para_type_block2a, specify the
initial address of the submatrix, a(3,1), as the address of the send buffer. On the
other hand, in using para_type_block2, specify the initial address of the matrix, a
or a(2,0), as the address of the send buffer.

2.5.2.1 Utility Subroutine: para_type_block2a

Parameters

INTEGER imin The minimum coordinate value of the first dimension

INTEGER imax The maximum coordinate value of the first dimension

INTEGER ilen The length of the rectangle in the first dimension

INTEGER jlen The length of the rectangle in the second dimension

INTEGER ioldtype The data type of the elements in the rectangular area

INTEGER inewtype The newly defined derived data type

Figure 24. Utility Subroutine para_type_block2a

Source code

SUBROUTINE para_type_block2a(imin, imax, ilen, jlen,
& ioldtype, inewtype)
INCLUDE ’mpif.h’
CALL MPI_TYPE_VECTOR(jlen, ilen, imax - imin + 1,

CALL para_type_block2a(imin, imax, ilen, jlen, ioldtype,
inewtype)

Usage
Basic Concepts of MPI 31

& ioldtype, inewtype, ierr)
CALL MPI_TYPE_COMMIT(inewtype, ierr)
END

2.5.2.2 Utility Subroutine: para_type_block2

Parameters

INTEGER imin The minimum coordinate value of the first dimension

INTEGER imax The maximum coordinate value of the first dimension

INTEGER jmin The minimum coordinate value of the second dimension

INTEGER ista The minimum coordinate value of the rectangular area in
the first dimension

INTEGER iend The maximum coordinate value of the rectangular area in
the first dimension

INTEGER jsta The minimum coordinate value of the rectangular area in
the second dimension

INTEGER jend The maximum coordinate value of the rectangular area in
the second dimension

INTEGER ioldtype The data type of the elements in the rectangular area

INTEGER inewtype The newly defined derived data type

Figure 25. Utility Subroutine para_type_block2

Source code

SUBROUTINE para_type_block2(imin, imax, jmin,
& ista, iend, jsta, jend,
& ioldtype, inewtype)
INCLUDE ’mpif.h’
INTEGER iblock(2), idisp(2), itype(2)

CALL para_type_block2(imin, imax, jmin, ista, iend, jsta, jend,
ioldtype, inewtype)

Usage
32 RS/6000 SP: Practical MPI Programming

CALL MPI_TYPE_EXTENT(ioldtype, isize, ierr)
ilen = iend - ista + 1
jlen = jend - jsta + 1
CALL MPI_TYPE_VECTOR(jlen, ilen, imax - imin + 1,

& ioldtype, itemp, ierr)
iblock(1) = 1
iblock(2) = 1
idisp(1) = 0
idisp(2) = ((imax-imin+1) * (jsta-jmin) + (ista-imin)) * isize
itype(1) = MPI_LB
itype(2) = itemp
CALL MPI_TYPE_STRUCT(2, iblock, idisp, itype, inewtype, ierr)
CALL MPI_TYPE_COMMIT(inewtype, ierr)
END

2.5.2.3 Utility Subroutine: para_type_block3a

Parameters

INTEGER imin The minimum coordinate value of the first dimension

INTEGER imax The maximum coordinate value of the first dimension

INTEGER jmin The minimum coordinate value of the second dimension

INTEGER jmax The maximum coordinate value of the second dimension

INTEGER ilen The length of the rectangular solid in the first dimension

INTEGER jlen The length of the rectangular solid in the second dimension

INTEGER klen The length of the rectangular solid in the third dimension

INTEGER ioldtype The data type of the elements in the rectangular solid

INTEGER inewtype The newly defined derived data type

CALL para_type_block3a(imin, imax, jmin, jmax, ilen, jlen,
klen, ioldtype, inewtype)

Usage
Basic Concepts of MPI 33

Figure 26. Utility Subroutine para_type_block3a

Source code

SUBROUTINE para_type_block3a(imin, imax, jmin, jmax,
& ilen, jlen, klen,
& ioldtype,inewtype)
INCLUDE ’mpif.h’
CALL MPI_TYPE_EXTENT(ioldtype, isize, ierr)
CALL MPI_TYPE_VECTOR(jlen, ilen, imax - imin + 1,

& ioldtype, itemp, ierr)
idist = (imax - imin + 1) * (jmax - jmin + 1) * isize
CALL MPI_TYPE_HVECTOR(klen, 1, idist, itemp, inewtype, ierr)
CALL MPI_TYPE_COMMIT(inewtype, ierr)
END

2.5.2.4 Utility Subroutine: para_type_block3

Parameters

INTEGER imin The minimum coordinate value of the first dimension

INTEGER imax The maximum coordinate value of the first dimension

CALL para_type_block3(imin, imax, jmin, jmax, kmin, ista, iend,
jsta, jend, ksta, kend, ioldtype, inewtype)

Usage
34 RS/6000 SP: Practical MPI Programming

INTEGER jmin The minimum coordinate value of the second dimension

INTEGER jmax The maximum coordinate value of the second dimension

INTEGER kmin The minimum coordinate value of the third dimension

INTEGER ista The minimum coordinate value of the rectangular solid in
the first dimension

INTEGER iend The maximum coordinate value of the rectangular solid
in the first dimension

INTEGER jsta The minimum coordinate value of the rectangular solid in
the second dimension

INTEGER jend The maximum coordinate value of the rectangular solid
in the second dimension

INTEGER ksta The minimum coordinate value of the rectangular solid in
the third dimension

INTEGER kend The maximum coordinate value of the rectangular solid
in the third dimension

INTEGER ioldtype The data type of the elements in the rectangular solid

INTEGER inewtype The newly defined derived data type

Figure 27. Utility Subroutine para_type_block3

Source code

SUBROUTINE para_type_block3(imin, imax, jmin, jmax, kmin,
& ista, iend, jsta, jend, ksta, kend,
& ioldtype, inewtype)
INCLUDE ’mpif.h’
Basic Concepts of MPI 35

INTEGER iblock(2), idisp(2), itype(2)
CALL MPI_TYPE_EXTENT(ioldtype, isize, ierr)
ilen = iend - ista + 1
jlen = jend - jsta + 1
klen = kend - ksta + 1
CALL MPI_TYPE_VECTOR(jlen, ilen, imax - imin + 1,

& ioldtype, itemp, ierr)
idist = (imax-imin+1) * (jmax-jmin+1) * isize
CALL MPI_TYPE_HVECTOR(klen, 1, idist, itemp, itemp2, ierr)
iblock(1) = 1
iblock(2) = 1
idisp(1) = 0
idisp(2) = ((imax-imin+1) * (jmax-jmin+1) * (ksta-kmin)

& + (imax-imin+1) * (jsta-jmin) + (ista-imin)) * isize
itype(1) = MPI_LB
itype(2) = itemp2
CALL MPI_TYPE_STRUCT(2, iblock, idisp, itype, inewtype, ierr)
CALL MPI_TYPE_COMMIT(inewtype, ierr)
END

2.6 Managing Groups

In most of the MPI programs, all processes work together to solve a single
problem. In other words, the communicator MPI_COMM_WORLD is often used in
calling communication subroutines. However, it is possible that a problem
consists of several subproblems and each problem can be solved concurrently.
This type of application can be found in the category of coupled analysis. MPI
allows you to create a new group as a subset of an existing group. Specifically,
use MPI_COMM_SPLIT for this purpose.

Figure 28. Multiple Communicators

Consider a problem with a fluid dynamics part and a structural analysis part,
where each part can be computed in parallel most of the time. You can create
new communicators for each part, say comm_fluid and comm_struct (see Figure
36 RS/6000 SP: Practical MPI Programming

28). Processes participating in the fluid part or the structure part communicate
with each other within the communicator comm_fluid or comm_struct,
respectively (solid arrows in the figure). When both parts need to exchange
results, processes on both sides can communicate in the communicator
MPI_COMM_WORLD (the dashed arrows). In Figure 28 on page 36 ranks within
MPI_COMM_WORLD are printed in italic, and ranks within comm_fluid or
comm_struct are in boldface.

2.7 Writing MPI Programs in C

When you write an MPI program in the C language, there are some points you
should be aware of.

• Include mpi.h instead of mpif.h.

• C is case-sensitive. All of the MPI functions have the form MPI_Function,
where MPI and I, C, and so on are in upper-case as in MPI_Init,
MPI_Comm_size. Constants defined in mpi.h are all in upper-case such as
MPI_INT, MPI_SUM, and MPI_COMM_WORLD.

• Those arguments of an MPI function call that specify the address of a buffer
have to be given as pointers.

• Return code of an MPI function call is given as an integer return value of that
function.

• Data types in the C semantics are defined in a more individual way. The
following is a partial list.

MPI_Status Status object

MPI_Request Request handle

MPI_Datatype Data type handle

MPI_Op Handle for reduction operation

In Fortran, all the above objects and handles are just defined as an integer or
an array of integers.

• Predefined MPI data types in C are different from Fortran bindings, as listed in
Table 7.

Table 7. MPI Data Types (C Bindings)

MPI Data Types Description (C Bindings)

MPI_CHAR 1-byte character

MPI_UNSIGNED_CHAR 1-byte unsigned character

MPI_SIGNED_CHAR 1-byte signed character

MPI_SHORT 2-byte integer

MPI_INT, MPI_LONG 4-byte integer

MPI_UNSIGNED_SHORT 2-byte unsigned integer

MPI_UNSIGNED, MPI_UNSIGNED_LONG 4-byte unsigned integer

MPI_FLOAT 4-byte floating point

MPI_DOUBLE, MPI_LONG_DOUBLE 8-byte floating point
Basic Concepts of MPI 37

Table 8 shows predefined combinations of reduction operations and data
types in C language.

Table 8. Predefined Combinations of Operations and Data Types (C Language)

Data types used for MPI_MAXLOC and MPI_MINLOC are essentially C
structures as shown in Table 9.

Table 9. Data Types for Reduction Functions (C Language)

The following is a sample C program.

sample.c

#include <mpi.h>

void main(int argc, char **argv)
{

int nprocs, myrank, tag, rc;
float sendbuf, recvbuf;
MPI_Request req;
MPI_Status status;

MPI_UNSIGNED_LONG_LONG 8-byte unsigned integer

MPI_LONG_LONG_INT 8-byte integer

MPI_WCHAR Wide (2-byte) unsigned character

Operation Data type

MPI_SUM (sum),
MPI_PROD (product),
MPI_MAX (maximum),
MPI_MIN (minimum)

MPI_INT, MPI_LONG, MPI_SHORT,
MPI_UNSIGNED_SHORT, MPI_UNSIGNED,
MPI_UNSIGNED_LONG, MPI_FLOAT, MPI_DOUBLE,
MPI_LONG_DOUBLE

MPI_MAXLOC (max value
and location),
MPI_MINLOC (min value
and location)

MPI_FLOAT_INT, MPI_DOUBLE_INT,
MPI_LONG_INT, MPI_2INT, MPI_SHORT_INT,
MPI_LONG_DOUBLE_INT

MPI_LAND (logical AND),
MPI_LOR (logical OR),
MPI_LXOR (logical XOR)

MPI_INT, MPI_LONG, MPI_SHORT,
MPI_UNSIGNED_SHORT, MPI_UNSIGNED,
MPI_UNSIGNED_LONG

MPI_BAND (bitwise AND),
MPI_BOR (bitwise OR),
MPI_BXOR (bitwise XOR)

MPI_INT, MPI_LONG, MPI_SHORT,
MPI_UNSIGNED_SHORT, MPI_UNSIGNED,
MPI_UNSIGNED_LONG, MPI_BYTE

Data Type Description (C structure)

MPI_FLOAT_INT {MPI_FLOAT, MPI_INT}

MPI_DOUBLE_INT {MPI_DOUBLE, MPI_INT}

MPI_LONG_INT {MPI_LONG, MPI_INT}

MPI_2INT {MPI_INT, MPI_INT}

MPI_SHORT_INT {MPI_SHORT, MPI_INT}

MPI_LONG_DOUBLE_INT {MPI_LONG_DOUBLE, MPI_INT}

MPI Data Types Description (C Bindings)
38 RS/6000 SP: Practical MPI Programming

rc = MPI_Init(&argc, &argv);
rc = MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
rc = MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

tag = 1;
if (myrank == 0) {

sendbuf = 9.0;
rc = MPI_Send(&sendbuf, 1, MPI_FLOAT,

1, tag, MPI_COMM_WORLD);
} else if (myrank == 1) {

rc = MPI_Irecv(&recvbuf, 1, MPI_FLOAT,
0, tag, MPI_COMM_WORLD, &req);

rc = MPI_Wait(&req, &status);
printf("recvbuf = %f\n", recvbuf);

}
rc = MPI_Finalize();

}

The above program is compiled and executed as follows.

$ mpcc sample.c
$./a.out -procs 2

1:recvbuf = 9.000000
Basic Concepts of MPI 39

40 RS/6000 SP: Practical MPI Programming

Chapter 3. How to Parallelize Your Program

In Chapter 2, “Basic Concepts of MPI” on page 11, you learned the most
fundamental MPI subroutines. In this chapter, you will see how these subroutines
are used in parallelizing programs.

3.1 What is Parallelization?

You parallelize your program in order to run the program faster. How much faster
will the parallel program run? Let us begin with Amdahl’s law. Suppose that in
terms of running time, a fraction of your program can be parallelized and that
the remaining cannot be parallelized. In the ideal situation, if you execute
the program using processors, the parallel running time will be

of the serial running time. This is a direct consequence of Amdahl’s law applied to
an ideal case of parallel execution. For example, if 80% of your program can be
parallelized and you have four processors, the parallel running time will be

, that is, 40% of the serial running time as shown in Figure
29.

Figure 29. Parallel Speed-up: An Ideal Case

Because 20% of your program cannot be parallelized, you get only 2.5 times
speed-up although you use four processors. For this program, the parallel
running time is never shorter than 20% of the serial running time (five times
speed-up) even if you have infinitely many processors. Amdahl’s law tells you
that it is important to identify the fraction of your program that can be parallelized
and to maximize it. Figure 30 on page 42 shows the upper bound of parallel
speed-up () for various values of .

p
1 p–

n

1 p– p n⁄+

1 0.8– 0.8 4⁄+ 0.4=

1 1 p–()⁄ p
© Copyright IBM Corp. 1999 41

Figure 30. The Upper Bound of Parallel Speed-Up

The above argument is too simplified to be applied to real cases. When you run a
parallel program, there is a communication overhead and a workload imbalance
among processes in general. Therefore, the running time will be as Figure 31
shows.

Figure 31. Parallel Speed-Up: An Actual Case

To summarize, you should follow these guidelines:

1. Increase the fraction of your program that can be parallelized.
42 RS/6000 SP: Practical MPI Programming

2. Balance the workload of parallel processes.

3. Minimize the time spent for communication.

You may need to change the algorithm of your program in order to increase the
parallelizable part. For example, an ordinary SOR (Successive Over-Relaxation)
method has a tight dependence that prevents you from parallelizing it efficiently.
But, if you rewrite the code to use the red-black SOR method, the code becomes
well fit to be parallelized efficiently. See 4.4, “SOR Method” on page 120 for
details.

What can you do to balance the workload of processes? Several measures can
be taken according to the nature of the program. Changing the distribution of
matrices from block distribution to cyclic distribution is one of them. See 3.4.1,
“Block Distribution” on page 54 and 3.4.2, “Cyclic Distribution” on page 56 for
examples.

The communication time is expressed as follows:

The latency is the sum of sender overhead, receiver overhead, and time of flight,
which is the time for the first bit of the message to arrive at the receiver. This
formula is illustrated in Figure 32, where the inverse of the gradient of the line
gives the bandwidth.

Figure 32. The Communication Time

Using this formula, the effective bandwidth is calculated as follows:

The effective bandwidth approaches the network bandwidth when the message
size grows toward infinity. It is clear that the larger the message is, the more
efficient the communication becomes.

Communication time Latency
Message size
Bandwidth

--+=

Effective bandwidth
Message size

Communication time
-- Bandwidth

1
Latency Bandwidth⋅

Message size
---+

---= =
How to Parallelize Your Program 43

Figure 33. The Effective Bandwidth

Figure 33 is a plot of the effective bandwidth for a network with 22 sec latency
and 133 MB/sec bandwidth, which corresponds to User Space protocol over SP
switch network using POWER3 nodes. If the message size is greater than 100
KB, the effective bandwidth is close to the network bandwidth.

The following two strategies show how you can decrease the time spent for
communication.

Strategy 1. Decrease the amount of data transmitted

Suppose that in a program employing the finite difference method, a matrix is
divided into three chunks in block distribution fashion and they are processed
separately by three processes in parallel.

µ

44 RS/6000 SP: Practical MPI Programming

Figure 34. Row-Wise and Column-Wise Block Distributions

Figure 34 shows two ways of distributing the matrix: row-wise and
column-wise block distributions. In the finite difference method, each matrix
element depends on the value of its neighboring elements. So, process 0 has
to send the data in the shaded region to process 1 as the computation
proceeds. If the computational time is the same for both distributions, you
should use the column-wise block distribution in order to minimize the
communication time because the submatrix of the column-wise distribution
has a smaller intersection than that of the row-wise distribution in this case.

Strategy 2. Decrease the number of times that data is transmitted

Suppose that in Figure 35, process 0 has to send the matrix elements in the
shaded region to process 1. In Fortran, multi-dimensional arrays are stored in
column-major order, that is, the array a(i,j) is stored in the order of a(1,1),
a(2,1), a(3,1),..., a(N,1), a(2,1), a(2,2), a(3,2),..., a(N,N). Therefore
the matrix elements that process 0 is going to send to process 1 (a(4,1),
a(4,2), a(4,3),..., a(4,N)) are not contiguous in memory.

Figure 35. Non-Contiguous Boundary Elements in a Matrix

If you call an MPI subroutine N times separately for each matrix element, the
communication overhead will be unacceptably large. Instead, you should first
copy the matrix elements to a contiguous memory location, and then call the
MPI subroutine once. Generally, the time needed for copying the data is much
How to Parallelize Your Program 45

smaller than the communication latency. Alternatively, you can define a
derived data type to let MPI pack the elements but it may not be optimal in
terms of performance. See 2.5, “Derived Data Types” on page 28 for details.

3.2 Three Patterns of Parallelization

For symmetric multiprocessor (SMP) machines, there are compilers that can
parallelize programs automatically or with the aid of compiler directives given by
the user. The executables generated by such compilers run in parallel using
multiple threads, and those threads can communicate with each other by use of
shared address space without explicit message-passing statements. When you
use the automatic parallelization facility of a compiler, you usually do not have to
worry about how and which part of the program is parallelized. The downside of
the automatic parallelization is that your control over parallelization is limited. On
the other hand, think about parallelizing your program using MPI and running it on
massively parallel processors (MPP) such as RS/6000 SP or clusters of RS/6000
workstations. In this case, you have complete freedom about how and where to
parallelize, where there is parallelism at all. But it is you who has to decide how to
parallelize your program and add some code that explicitly transmits messages
between the processes. You are responsible for the parallelized program to run
correctly. Whether the parallelized program performs well or not often depends on
your decision about how and which part of the program to parallelize.

Although they are not complete, the following three patterns show typical ways of
parallelizing your code from a global point of view.

Pattern 1. Partial Parallelization of a DO Loop

In some programs, most of the CPU time is consumed by a very small part of
the code. Figure 36 shows a code with an enclosing DO loop of t that ticks
time steps. Suppose that the inner DO loop (B) spends most of the CPU time
and the parts (A) and (C) contain a large number of lines but do not spend
much time. Therefore, you don’t get much benefit from parallelizing (A) and
(C). It is reasonable to parallelize only the inner DO loop (B). However, you
should be careful about the array a(), because it is updated in (B) and is
referenced in (C). In this figure, black objects (circles, squares, and triangles)
indicate that they have updated values.

Figure 36. Pattern 1: Serial Program
46 RS/6000 SP: Practical MPI Programming

Figure 37 shows how the code is parallelized and executed by three
processes. The iterations of the inner DO loop are distributed among
processes and you can expect parallel speed-up from here. Since the array
a() is referenced in part (C), the updated values of a() are distributed by
syncdata in (B’). Section 3.5.3.2, “Synchronizing Data” on page 73 gives you
the implementation of syncdata. Note that you don’t have to care about which
part of the array a() is used by which process later, because after (B’) every
process has up-to-date values of a(). On the other hand, you may be doing
more data transmissions than necessary.

Figure 37. Pattern 1: Parallelized Program

By using this method, you can minimize the workload of parallelization. In
order for this method to be effective, however, the inner DO loop should
account for a considerable portion of the running time and the communication
overhead due to syncdata should be negligible.

Pattern 2. Parallelization Throughout a DO Loop

In programs using the finite difference method, you often see that within the
outer DO loop that is ticking time steps, there are several DO loops that
almost equally contribute to the total running time, as shown in Figure 38 on
page 48. If you are to synchronize data among processes every time after
each DO loop, the communication overhead might negate the benefit of
parallelization. In this case, you need to parallelize all the inner DO loops and
minimize the amount of messages exchanged in order to get a reasonable
parallel speed-up.
How to Parallelize Your Program 47

Figure 38. Pattern 2: Serial Program

In the parallelized program in Figure 39 on page 49, the iterations of DO loops
are distributed among processes. That is, in each DO loop, a process
executes the statements only for its assigned range of the iteration variable
(). Each process does not need to know the values of arrays a()

and b() outside this range except for loop (B) where adjacent values of array
b() are necessary to compute a(). So, it is necessary and sufficient to
exchange data of the boundary element with neighboring processes after loop
(A). The subroutine shift is assumed to do the job. The implementation of
shift is shown in 3.5.2, “One-Dimensional Finite Difference Method” on page
67. In this program, the values of b(0) and b(7) are fixed and not updated.

ista i iend≤ ≤
48 RS/6000 SP: Practical MPI Programming

Figure 39. Pattern 2: Parallel Program

Although the workload of rewriting the code is large compared with Pattern 1,
you will get the desired speed-up.

Pattern 3. Coarse-Grained versus Fine-Grained Parallelization

A program sometimes has parallelism at several depth levels of the scoping
unit. Figure 40 on page 50 shows a program, which calls subroutine solve for
an independent set of input array a(). Suppose that subroutine sub is the hot
spot of this program. This program has parallelism in DO loops in the main
program and in subroutine sub, but not in subroutine solve. Whether you
parallelize the program in the main program or in subroutine sub is a matter of
granularity of parallelization.
How to Parallelize Your Program 49

Figure 40. Pattern 3: Serial Program

If you parallelize subroutine sub as in Figure 41, you need to add extra code
(MPI_ALLGATHER) to keep consistency and to rewrite the range of iteration
variables in all the DO loops in sub. But the workload of each process will be
fairly balanced because of the fine-grained parallelization.

Figure 41. Pattern 3: Parallelized at the Innermost Level

On the other hand, if you parallelize the DO loop in the main program as in
Figure 42, less statements need to be rewritten. However, since the work is
distributed to processes in coarse-grained fashion, there might be more load
unbalance between processes. For example, the number of iterations needed
for the solution to converge in solve may vary considerably from problem to
problem.

Figure 42. Pattern 3: Parallelized at the Outermost Level

Generally, it is recommended to adopt coarse-grained parallelization if
possible, as long as the drawback due to the load imbalance is negligible.
50 RS/6000 SP: Practical MPI Programming

3.3 Parallelizing I/O Blocks

This section describes typical method used to parallelize a piece of code
containing I/O operations. For better performance, you may have to prepare files
and the underlying file systems appropriately.

Input 1. All the processes read the input file on a shared file system

The input file is located on a shared file system and each process reads data
from the same file. For example, if the file system is an NFS, it should be
mounted across a high speed network, but, even so, there will be I/O
contention among reading processes. If you use GPFS (General Parallel File
System), you might distribute the I/O across underlying GPFS server nodes.
Note that unless you modify the code, the input file has to be accessed by the
processes with the same path name.

Figure 43. The Input File on a Shared File System

Input 2. Each process has a local copy of the input file

Before running the program, copy the input file to each node so that the
parallel processes can read the file locally. This method gives you better
performance than reading from a shared file system, at the cost of more disk
space used and the additional work of copying the file.

Figure 44. The Input File Copied to Each Node
How to Parallelize Your Program 51

Input 3. One process reads the input file and distributes it to the other
processes

The input file is read by one process, and that process distributes the data to
the other processes by using MPI_BCAST, for instance.

Figure 45. The Input File Read and Distributed by One Process

In all three cases of parallelized input, you can modify the code so that each
process reads (or receives) the minimum amount of data that is necessary, as
shown in Figure 46, for example.

Figure 46. Only the Necessary Part of the Input Data is Distributed

In the program, MPI_SCATTER is called instead of MPI_BCAST.

Output 1. Standard output

In Parallel Environment for AIX, standard output messages of all the
processes are displayed by default at the terminal which started the parallel
process. You can modify the code:

...
PRINT *, ’=== Job started ===’
...

as
52 RS/6000 SP: Practical MPI Programming

...
IF (myrank == 0) THEN
PRINT *, ’=== Job started ===’

ENDIF
...

so that only process 0 will write to the standard output. Alternatively, you can
set the environment variable MP_STDOUTMODE as 0 to get the same effect.
See A.5, “Standard Output and Standard Error” on page 158 for the usage of
MPI_STDOUTMODE.

Output 2. One process gathers data and writes it to a local file

First, one of the processes gathers data from the other processes. Then that
process writes the data to a file.

Figure 47. One Process Gathers Data and Writes It to a Local File

Output 3. Each process writes its data sequentially to a file on a shared file
system

The output file is on a shared file system. If each process writes its portion of
data individually and simultaneously to the same file, the contents of the file
may be corrupted. The data have to be written to the file sequentially, process
by process.

Figure 48. Sequential Write to a Shared File
How to Parallelize Your Program 53

The outline of the program is as follows:

...
DO irank = 0, nprocs - 1

CALL MPI_BARRIER(MPI_COMM_WORLD, ierr)
IF (irank == myrank) THEN

IF (myrank == 0) THEN
OPEN(10, FILE=’output’)

ELSE
OPEN(10, FILE=’output’, POSITION=’APPEND’)

ENDIF
WRITE(10) (outdata(i), i=ista,iend)
CLOSE(10)

ENDIF
ENDDO
...

The subroutine MPI_BARRIER is used to synchronize processes. The range of
array output() held by each process is assumed to be ista..iend.

3.4 Parallelizing DO Loops

In almost all of the scientific and technical programs, the hot spots are likely to be
found in DO loops. Thus parallelizing DO loops is one of the most important
challenges when you parallelize your program. The basic technique of
parallelizing DO loops is to distribute iterations among processes and to let each
process do its portion in parallel. Usually, the computations within a DO loop
involves arrays whose indices are associated with the loop variable. Therefore
distributing iterations can often be regarded as dividing arrays and assigning
chunks (and computations associated with them) to processes.

3.4.1 Block Distribution
In block distribution, the iterations are divided into p parts, where p is the number
of processes to be executed in parallel. The iterations in each part is consecutive
in terms of the loop variable. For example, if four processes will execute a DO
loop of 100 iterations, process 0 executes iterations 1-25, process 1 does 26-50,
process 2 does 51-75, and process 3 does 76-100. If the number of iterations, n,
is not divisible by the number of processes, p, there are several ways you can
adopt in distributing n iterations to p processes. Suppose when you divide n by p,
the quotient is q and the remainder is r, that is, . For example, in the
case of n = 14 and p = 4, q is 3 and r is 2. One way to distribute iterations in such
cases is as follows.

Processes 0..r-1 are assigned q + 1 iterations each.

The other processes are assigned q iterations.

This distribution corresponds to expressing n as .

Figure 49. Block Distribution

n p q r+×=

n r q 1+() p r–()q+=
54 RS/6000 SP: Practical MPI Programming

Figure 49 depicts how 14 iterations are block-distributed to four processes using
the above method. In parallelizing a program, it is convenient to provide a utility
subroutine that calculates the range of iterations of a particular process. Of
course, this is not an MPI subroutine.

Parameters

INTEGER n1 The lowest value of the iteration variable (IN)

INTEGER n2 The highest value of the iteration variable (IN)

INTEGER nprocs The number of processes (IN)

INTEGER irank The rank for which you want to know the range of iterations
(IN)

INTEGER ista The lowest value of the iteration variable that processes
irank executes (OUT)

INTEGER iend The highest value of the iteration variable that processes
irank executes (OUT)

The following is the actual code.

SUBROUTINE para_range(n1, n2, nprocs, irank, ista, iend)
iwork1 = (n2 - n1 + 1) / nprocs
iwork2 = MOD(n2 - n1 + 1, nprocs)
ista = irank * iwork1 + n1 + MIN(irank, iwork2)
iend = ista + iwork1 - 1
IF (iwork2 > irank) iend = iend + 1
END

Obviously, other ways of block distribution are also possible. The most important
one among them is the way used in Parallel Engineering and Scientific
Subroutine Library for AIX. For details, see “Distributing Your Data” in Parallel
Engineering and Scientific Subroutine Library for AIX Guide and Reference,
SA22-7273.

SUBROUTINE para_range(n1, n2, nprocs, irank, ista, iend)
iwork = (n2 - n1) / nprocs + 1
ista = MIN(irank * iwork + n1, n2 + 1)
iend = MIN(ista + iwork - 1, n2)
END

This subroutine distributes 14 iterations to four processes, as shown in Figure 50,
which is slightly different from Figure 49.

Figure 50. Another Block Distribution

Note that in this method, it may happen that some processes are assigned no
iterations at all. Since MPI subroutines return errors when you specify negative
integers as the number of elements to send or receive, special care is taken in

CALL para_range(n1, n2, nprocs, irank, ista, iend)

Usage
How to Parallelize Your Program 55

calculating ista so that the number of elements held by a process is always given
by iend - ista + 1.

Take a look at the following example. The original serial program computes the
sum of the elements of an array a().

PROGRAM main
PARAMETER (n = 1000)
DIMENSION a(n)
DO i = 1, n

a(i) = i
ENDDO
sum = 0.0
DO i = 1, n

sum = sum + a(i)
ENDDO
PRINT *,’sum =’,sum
END

The parallelized program divides the iterations in the block distribution manner,
and each process computes the partial sum of the array in the range calculated
by the subroutine para_range. The partial sums are finally added together by the
subroutine MPI_REDUCE.

PROGRAM main
INCLUDE ’mpif.h’
PARAMETER (n = 1000)
DIMENSION a(n)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
CALL para_range(1, n, nprocs, myrank, ista, iend)
DO i = ista, iend

a(i) = i
ENDDO
sum = 0.0
DO i = ista, iend

sum = sum + a(i)
ENDDO
CALL MPI_REDUCE(sum, ssum, 1, MPI_REAL,

& MPI_SUM, 0, MPI_COMM_WORLD, ierr)
sum = ssum
IF (myrank == 0) PRINT *,’sum =’,sum
CALL MPI_FINALIZE(ierr)
END

In using the block distribution, depending on the underlying physical model, the
workload may be significantly unbalanced among processes. The cyclic
distribution described in the next section may work for such cases.

3.4.2 Cyclic Distribution
In cyclic distribution, the iterations are assigned to processes in a round-robin
fashion. The simplest way to rewrite a DO loop is:

DO i = n1, n2
computation

ENDDO
56 RS/6000 SP: Practical MPI Programming

Or as follows:

DO i = n1 + myrank, n2, nprocs
computation

ENDDO

Figure 51 shows how 14 iterations are assigned to four processes in cyclic
distribution.

Figure 51. Cyclic Distribution

The program used to calculate the sum of an array a() in the previous section can
be parallelized by the cyclic distribution as well.

PROGRAM main
INCLUDE ’mpif.h’
PARAMETER (n = 1000)
DIMENSION a(n)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
DO i = 1 + myrank, n, nprocs

a(i) = i
ENDDO
sum = 0.0
DO i = 1 + myrank, n, nprocs

sum = sum + a(i)
ENDDO
CALL MPI_REDUCE(sum, ssum, 1, MPI_REAL,

& MPI_SUM, 0, MPI_COMM_WORLD, ierr)
sum = ssum
PRINT *,’sum =’,sum
CALL MPI_FINALIZE(ierr)
END

Note that, in general, the cyclic distribution incurs more cache misses than the
block distribution because of non-unit stride access to matrices within a loop. In
which case should you use the cyclic distribution? One example is the LU
factorization where the cyclic distribution provides more balanced workload for
processes than the block distribution does. See 4.3, “LU Factorization” on page
116 for details. Other examples are molecular dynamics and the distinct element
method, where the amount of computation may deviate a lot from particle to
particle and from iteration to iteration.

If there are several DO loops with different iteration ranges, you can provide a
mapping array map() and add a conditional statement in loops instead of adjusting
the lower bound of each DO loop.

INTEGER map(n)
DO i = 1, n

map(i) = MOD(i - 1, nprocs)
ENDDO
DO i = n1, n2

IF (map(i) == myrank) THEN
How to Parallelize Your Program 57

computation
ENDIF

ENDDO
DO i = n3, n4

IF (map(i) == myrank) THEN
computation

ENDIF
ENDDO

The downside of this method is that if the computation per iteration is small, the
IF statement in the loop may prevent the compiler from aggressive optimization
and the performance may be degraded considerably.

3.4.3 Block-Cyclic Distribution
The block-cyclic distribution is, as the name suggests, a natural generalization of
the block distribution and the cyclic distribution. The iterations are partitioned into
equally sized chunks (except for the last chunk) and these chunks are assigned
to processes in a round-robin fashion. When you use the block-cyclic distribution,
the “block” nature gives you less cache misses than the pure cyclic distribution,
and the “cyclic” nature provides better load balance for certain classes of
algorithms than the pure block distribution.

Figure 52. Block-Cyclic Distribution

Figure 52 is an example of the block-cyclic distribution of 14 iterations to four
processes with a block size of two. In general, a loop:

DO i = n1, n2
computation

ENDDO

is rewritten as

DO ii = n1 + myrank * iblock, n2, nprocs * iblock
DO i = ii, MIN(ii + iblock - 1, n2)

computation
ENDDO

ENDDO

where the block size, iblock, is assumed to be given somewhere before the
loop. You can use a mapping array instead as described in 3.4.2, “Cyclic
Distribution” on page 56.

3.4.4 Shrinking Arrays
When you use block distribution, cyclic distribution, or block-cyclic distribution, it
is often sufficient for each process to have only a part of the array(s) and to do
the computation associated with that part. If a process needs data that another
process holds, there has to be some transmission of the data between the
processes. This subject is covered in 3.5, “Parallelization and Message-Passing”
on page 66. On a parallel hardware with distributed memory architecture such as
58 RS/6000 SP: Practical MPI Programming

RS/6000 SP, each node has physical memory of its own and processes running
on different nodes do not share the address space. Therefore the memory
utilization is improved by letting each process use only the necessary and
sufficient amount of memory. This technique is referred to as shrinking arrays or
shrunk arrays in this publication. Put in another way, shrinking arrays allows you
to use larger memory for your parallel job.

Figure 53. The Original Array and the Unshrunken Arrays

In Figure 53 (a), array a() is used for simulating some physical phenomena on
the surface of the earth. Suppose that the size of the matrix of Figure 53 (a) just
fits in the physical memory of a node. You run the simulation in parallel using four
processes using four nodes. If you don’t shrink arrays (Figure 53 (b)), the
resolution of the simulation is the same as that of the serial run due to the
limitation of memory size.
How to Parallelize Your Program 59

Figure 54. The Shrunk Arrays

When you shrink arrays, processes do not have to store data outside their
assigned region. Therefore, each process can use more memory for its portion.
As illustrated in Figure 54, the resolution of the simulation can be quadrupled by
shrinking arrays in this case. Or, in other cases, you may want to extend the area
to be computed with the same resolution. The technique of shrinking arrays
allows you to use more memory for parallel processing.

Massively Parallel Processor (MPP) computers are able to use this technique to
the fullest because the total amount of memory grows as you add more nodes.
On the other hand, shared memory computers (SMP: Symmetric Multiprocessor)
have comparatively small maximum memory sizes, which limits the size of the
problem that you can solve.

If the size of arrays and the number of processes are known beforehand, you can
explicitly write a program to shrink arrays. If this it is not the case, it is convenient
to exploit the ALLOCATE statement, which dynamically provides storage at
execution time.

PROGRAM main
INCLUDE ’mpif.h’
PARAMETER (n1 = 1, n2 = 1000)
REAL, ALLOCATABLE :: a(:)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
CALL para_range(n1, n2, nprocs, myrank, ista, iend)
ALLOCATE (a(ista:iend))
DO i = ista, iend

a(i) = i
ENDDO
sum = 0.0
DO i = ista, iend

sum = sum + a(i)
60 RS/6000 SP: Practical MPI Programming

ENDDO
DEALLOCATE (a)
CALL MPI_REDUCE(sum, ssum, 1, MPI_REAL,

& MPI_SUM, 0, MPI_COMM_WORLD, ierr)
sum = ssum
PRINT *,’sum =’,sum
CALL MPI_FINALIZE(ierr)
END

In the above sample program, each process consumes memory only for its
portion of the block-distributed array a().

Figure 55. Shrinking an Array

Figure 55 exemplifies how each process holds its own data. Process 0, for
example, has only four elements of the array a() instead of the entire array.

3.4.5 Parallelizing Nested Loops
In this section, only doubly nested loops are considered for parallelization. The
arguments given here, however, are easily generalized to more highly nested
loops. Only block distribution is discussed in this section.

When you parallelize nested loops, there are two factors that you always have to
keep in mind:

1. Minimize cache misses

2. Minimize communication

According to the above two guidelines, decide how to parallelize the loops.
Remember that in Fortran, multi-dimensional arrays are stored in memory in
column-major order. (See “Strategy 2. Decrease the number of times that data is
transmitted” on page 45.) In the case of C language, the order is the other way
round. Therefore, the elements of a two-dimensional array is stored in memory in
the order shown in Figure 56 on page 62.
How to Parallelize Your Program 61

Figure 56. How a Two-Dimensional Array is Stored in Memory

It is more efficient to access arrays successively in the order they are stored in
memory than to access them irrelevantly to that order. This rule is an ABC of
technical computing. Consider the following loops.

Loop A

DO j = 1, n
DO i = 1, n

a(i,j) = b(i,j) + c(i,j)
ENDDO

ENDDO

Loop B

DO i = 1, n
DO j = 1, n

a(i,j) = b(i,j) + c(i,j)
ENDDO

ENDDO

The larger number of cache misses due to a large stride makes Loop B much
slower than Loop A. When you parallelize Loop A, the same rule applies.

Loop A1

DO j = jsta, jend
DO i = 1, n

a(i,j) = b(i,j) + c(i,j)
ENDDO

ENDDO

Loop A2

DO j = 1, n
DO i = ista, iend

a(i,j) = b(i,j) + c(i,j)
ENDDO

ENDDO
62 RS/6000 SP: Practical MPI Programming

As far as Loop A is concerned, you are advised to parallelize the outer loop as in
Loop A1 due to fewer cache misses. See Figure 57.

Figure 57. Parallelization of a Doubly-Nested Loop: Memory Access Pattern

Next, take into consideration the amount of data that needs to be transmitted. In
Loop A, the computation is local in that the data necessary for the computation
are distributed to processes in the same way the loop iterations are divided.
Consider the following loop:

Loop C

DO j = 1, n
DO i = 1, n

a(i,j) = b(i,j-1) + b(i,j+1)
ENDDO

ENDDO

Figure 58. Dependence in Loop C

Since Loop C has a dependence on neighboring elements on the same row, if
you parallelize the outer loop (column-wise distribution), you need to exchange
data on the boundary between processes. In Figure 59, suppose that the process
r has valid data for matrix elements a(i,j) and b(i,j) only in the range
and . Then, when you calculate a(i,jsta), you need to have the
value of b(i,jsta-1) transmitted from process r-1, and when you calculate
a(i,jend), you need b(i,jend+1) from process r+1. In total, process r has to
receive 2n elements from neighboring processes, and send 2n elements back to
them in return.

1 i n≤ ≤
jsta j jend≤ ≤
How to Parallelize Your Program 63

Figure 59. Loop C Block-Distributed Column-Wise

On the other hand, if you parallelize the inner loop (row-wise distribution),
communication is not necessary. Since, in general, the communication latency is
much larger than the memory latency, you should parallelize the inner loop in this
case. Compare this with the discussion about Loop A1 and Loop A2.

Loop C has dependence in only one dimension. What if a loop has dependence in
both dimensions?

Loop D

DO j = 1, n
DO i = 1, m

a(i,j) = b(i-1,j) + b(i,j-1) + b(i,j+1) + b(i+1,j)
ENDDO

ENDDO

Figure 60. Dependence in Loop D

In such cases, the range of iterations also matters in deciding your strategy.
Suppose m is greater than n. As you saw in Figure 59, the number of elements
that must be transmitted, if any, is proportional to the length of boundary between
processes. In Figure 61 on page 65, the elements of matrix b(i,j) that have to be
transmitted are marked as shaded boxes. It is evident that due to the assumption
of m and n, you should parallelize the inner loop (row-wise distribution) in this
case.
64 RS/6000 SP: Practical MPI Programming

Figure 61. Loop D Block-Distributed (1) Column-Wise and (2) Row-Wise

All the doubly-nested loops in this section so far are parallelized either in the
inner or in the outer loop. However, you can parallelize both loops as follows:

Loop E

DO j = jsta, jend
DO i = ista, iend

a(i,j) = b(i-1,j) + b(i,j-1) + b(i,j+1) + b(i+1,j)
ENDDO

ENDDO

Figure 62. Block Distribution of Both Dimensions

Figure 62 is an example of distributing a matrix to four processes by dividing both
dimensions into two. There is an obvious restriction: the number of processes has
to be a compound number. In other words, it has to be expressed as a product of
integers greater than 1.

When the number of processes is expressed in several ways as a product of two
integers, you should be careful in choosing among those options. Generally,
How to Parallelize Your Program 65

choose a distribution so that the rectangle area for each process becomes as
close to square as possible. This is based on the following observation. The
amount of data for transmission is proportional to the perimeter of the rectangle
except for the boundary processes, and the perimeter is minimized in square as
long as the area of the rectangle is the same.

Figure 63. The Shape of Submatrices and Their Perimeter

Figure 63 shows three ways of distributing a 24x24 matrix to 12 processes. From
left to right, the matrix is divided into 1x12, 2x6, and 3x4 blocks. And the
maximum number of elements to be transmitted per process is, 48, 26, and 24,
respectively.

3.5 Parallelization and Message-Passing

As you saw in 3.4, “Parallelizing DO Loops” on page 54, the focus of
parallelization is dividing the amount of computation by p (the number of
processes) and speeding up the computation. In doing so, a process may not
have all the data it needs, or it may have incorrect or false data because they lie
outside the assigned part of that process and the process does not care about
them. Message-passing can be viewed as a job of fixing this situation, which you
do not do voluntarily but are obliged to do reluctantly. But do not worry. There are
not an overwhelming number of variations of situations where you have to use
message-passing. In this section are the typical cases and their solutions that are
applicable to wide range of programs.

3.5.1 Reference to Outlier Elements
Consider parallelizing the following code by block distribution.

...
REAL a(9), b(9)
...
DO i = 1, 9

a(i) = i
ENDDO
DO i = 1, 9

b(i) = b(i) * a(1)
ENDDO
...

The second loop references a specific element a(1), and all processes need to
get the right value.
66 RS/6000 SP: Practical MPI Programming

Figure 64. Reference to an Outlier Element

Figure 64 shows a parallel execution by three processes. Since processes 1 and
2 do not have a valid entry for a(1), it has to be broadcasted by process 0.

...
REAL a(9), b(9)
...
DO i = ista, iend

a(i) = i
ENDDO
CALL MPI_BCAST(a(1), 1, MPI_REAL, 0, MPI_COMM_WORLD, ierr)
DO i = ista, iend

b(i) = b(i) * a(1)
ENDDO
...

This type of data transmission is seen in the LU factorization, where the process
that is holding the pivot column broadcasts that column to the other processes.
See 4.3, “LU Factorization” on page 116 for detail.

3.5.2 One-Dimensional Finite Difference Method
It is not an exaggeration to call the finite difference method (FDM) the king of
technical computing because the FDM and its variations are the most frequently
used method to solve partial differential equations. This section discusses
one-dimensional FDM in its most simplified form. Two-dimensional FDM is
discussed in 4.1, “Two-Dimensional Finite Difference Method” on page 99.

The following program abstracts the essence of one-dimensional FDM, where
coefficients and the enclosing loop for convergence are omitted.

PROGRAM main
IMPLICIT REAL*8(a-h,o-z)
PARAMETER (n = 11)
DIMENSION a(n), b(n)
DO i = 1, n

b(i) = i
ENDDO
DO i = 2, n-1

a(i) = b(i-1) + b(i+1)
ENDDO
END

Executed in serial, the above program computes the array a() from left to right in
Figure 65 on page 68. In this figure, the data dependence is shown as arrows.
The same kind of program was discussed in “Pattern 2. Parallelization
How to Parallelize Your Program 67

Throughout a DO Loop” on page 47, where the details of message-passing was
hidden in a presumed subroutine shift. Here, explicit code of shift is given.

Figure 65. Data Dependence in One-Dimensional FDM

The following program is a parallelized version that distributes data in the block
distribution fashion and does the necessary data transmissions. The program
does not exploit the technique of shrinking arrays. The numbers on the left are
not part of the program and are only for reference.

1 PROGRAM main
2 INCLUDE ’mpif.h’
3 IMPLICIT REAL*8(a-h,o-z)
4 PARAMETER (n = 11)
5 DIMENSION a(n), b(n)
6 INTEGER istatus(MPI_STATUS_SIZE)
7 CALL MPI_INIT(ierr)
8 CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
9 CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

10 CALL para_range(1, n, nprocs, myrank, ista, iend)
11 ista2 = ista
12 iend1 = iend
13 IF (myrank == 0) ista2 = 2
14 IF (myrank == nprocs - 1) iend1 = n - 1
15 inext = myrank + 1
16 iprev = myrank - 1
17 IF (myrank == nprocs-1) inext = MPI_PROC_NULL
18 IF (myrank == 0) iprev = MPI_PROC_NULL
19 DO i = ista, iend
20 b(i) = i
21 ENDDO
22 CALL MPI_ISEND(b(iend), 1, MPI_REAL8, inext, 1, MPI_COMM_WORLD, isend1, ierr)
23 CALL MPI_ISEND(b(ista), 1, MPI_REAL8, iprev, 1, MPI_COMM_WORLD, isend2, ierr)
24 CALL MPI_IRECV(b(ista-1), 1, MPI_REAL8, iprev, 1, MPI_COMM_WORLD, irecv1, ierr)
25 CALL MPI_IRECV(b(iend+1), 1, MPI_REAL8, inext, 1, MPI_COMM_WORLD, irecv2, ierr)
26 CALL MPI_WAIT(isend1, istatus, ierr)
27 CALL MPI_WAIT(isend2, istatus, ierr)
28 CALL MPI_WAIT(irecv1, istatus, ierr)
29 CALL MPI_WAIT(irecv2, istatus, ierr)
30 DO i = ista2, iend1
31 a(i) = b(i-1) + b(i+1)
32 ENDDO
33 CALL MPI_FINALIZE(ierr)
34 END

Lines 2, 7, 8, and 9 are for the initialization of MPI processes. Since non-blocking
communication subroutines and consequently MPI_WAIT are used later, a
declaration of a status array, istatus, is also necessary (line 6). Subroutine
para_range (3.4.1, “Block Distribution” on page 54) calculates lower and upper
bounds of the iteration variable (line 10). Since the second loop in the original
program has range 2..n-1 instead of 1..n, another pair of bounds, ista2 and
iend1, are prepared for the second loop (lines 11-14). Consider why you cannot
use para_range for calculating ista2 and iend1. In communicating with adjacent
processes, processes 0 and nprocs-1 have only one neighbor, while the other
processes have two. You can handle this discrepancy by adding IF statements
that treat processes 0 and nprocs-1 specially. But in the above program, send and
receive subroutines are used symmetrically for all processes by specifying
68 RS/6000 SP: Practical MPI Programming

MPI_PROC_NULL as the source or the destination if no transmission is
necessary (lines 17 and 18).

Figure 66. Data Dependence and Movements in the Parallelized FDM

In one-dimensional FDM, the data to be transmitted is on the boundary of a
one-dimensional array, which are points. Likewise, in two-dimensional FDM, data
on lines are transmitted, and in three-dimensional FDM, data on planes are
transmitted.

Some FDM programs have cyclic boundary conditions imposed by the underlying
physical model. Typically, you see code as shown in the following:

DO i = 1, n
a(i) = ...

ENDDO
a(1) = a(n)

Do not overlook the last statement in parallelizing the code.

INTEGER istatus(MPI_STATUS_SIZE)
...
DO i = ista, iend
a(i) = ...

ENDDO
IF (myrank == nprocs - 1) THEN
CALL MPI_SEND(a(n), 1, MPI_REAL8, 0, 1, MPI_COMM_WORLD, ierr)

ELSEIF (myrank == 0) THEN
CALL MPI_RECV(a(1), 1, MPI_REAL8, nprocs - 1, 1, MPI_COMM_WORLD, istatus, ierr)

ENDIF

Of course, you can choose the combination of non-blocking subroutines and
MPI_WAIT.

3.5.3 Bulk Data Transmissions
This section deals with the cases where data to be transmitted does not
necessarily lie on the boundary between processes. Rather, each process sends
the whole data assigned to it to a certain process (gather), or processes
exchange data simultaneously to have the up-to-date elements over whole arrays
(allgather), or you change the block distribution from column-wise to row-wise
and reassign the matrix elements to processes.

3.5.3.1 Gathering Data to One Process
Sometimes (usually near the end of a parallel program), you might need to gather
data computed separately by parallel processes to a single process. The
following four cases are possible depending on whether the data held by a
How to Parallelize Your Program 69

process is contiguous in memory or not and whether the send and receive buffers
overlap or not.

1. Contiguous data; send and receive buffers do not overlap

2. Contiguous data; send and receive buffers overlap

3. Non-contiguous data; send and receive buffers do not overlap

4. Non-contiguous data; send and receive buffers overlap

Case 3 is not described because it is part of the understanding of cases 1, 2, and
4.

In the following discussion, two-dimensional arrays are considered. If the data to
be transmitted are not contiguous in memory, the utility subroutines that define
derived data types (2.5, “Derived Data Types” on page 28) are used. In using
MPI_GATHER and its derivatives (MPI_GATHERV, MPI_ALLGATHER, and
MPI_ALGATHERV), the send and receive buffers may not overlap in memory, so
you have to resort to point-to-point communication subroutines if they overlap. In
MPI-2, the situation has changed though (See 2.3.2, “MPI_GATHER” on page
17).

Case 1. Contiguous data; send and receive buffers do not overlap

You only need MPI_GATHERV for this case. Array elements in Figure 67 are
chosen deliberately so that they indicate the displacement counts measured
from the beginning of the matrix.

Figure 67. Gathering an Array to a Process (Contiguous; Non-Overlapping Buffers)

The parallelized code segment is given below.

REAL a(m,n), b(m,n)
INTEGER, ALLOCATABLE :: idisp(:), jjlen(:)
...
ALLOCATE (idisp(0:nprocs-1), jjlen(0:nprocs-1))
DO irank = 0, nprocs - 1

CALL para_range(1, n, nprocs, irank, jsta, jend)
70 RS/6000 SP: Practical MPI Programming

jjlen(irank) = m * (jend - jsta + 1)
idisp(irank) = m * (jsta - 1)

ENDDO
CALL para_range(1, n, nprocs, myrank, jsta, jend)
...
CALL MPI_GATHERV(a(1,jsta), jjlen(myrank), MPI_REAL,

& b, jjlen, idisp, MPI_REAL, 0, MPI_COMM_WORLD, ierr)
DEALLOCATE (idisp, jjlen)
...

Case 2. Contiguous data; send and receive buffers overlap

When the send and receive buffers overlap in memory, you cannot use
MPI_GATHERV. Use point-to-point communication subroutines instead.

Figure 68. Gathering an Array to a Process (Contiguous; Overlapping Buffers)

REAL a(m,n)
INTEGER, ALLOCATABLE :: jjsta(:), jjlen(:), iireq(:)
INTEGER istatus(MPI_STATUS_SIZE)
...
ALLOCATE (jjsta(0:nprocs-1))
ALLOCATE (jjlen(0:nprocs-1))
ALLOCATE (iireq(0:nprocs-1))
DO irank = 0, nprocs - 1

CALL para_range(1, n, nprocs, irank, jsta, jend)
jjsta(irank) = jsta
jjlen(irank) = m * (jend - jsta + 1)

ENDDO
CALL para_range(1, n, nprocs, myrank, jsta, jend)
...
IF (myrank == 0) THEN

DO irank = 1, nprocs - 1
CALL MPI_IRECV(a(1,jjsta(irank)),jjlen(irank),MPI_REAL,

& irank, 1, MPI_COMM_WORLD, iireq(irank),ierr)
ENDDO
DO irank = 1, nprocs - 1

CALL MPI_WAIT(iireq(irank), istatus, ierr)
ENDDO

ELSE
How to Parallelize Your Program 71

CALL MPI_ISEND(a(1,jsta), jjlen(myrank), MPI_REAL,
& 0, 1, MPI_COMM_WORLD, ireq, ierr)

CALL MPI_WAIT(ireq, istatus, ierr)
ENDIF
DEALLOCATE (jjsta, jjlen, iireq)
...

Case 3. Non-contiguous data; send and receive buffers do not overlap

This case is trivial after reading Case 4.

Case 4. Non-contiguous data; send and receive buffers overlap

When you divide a two-dimensional array by rows, each process holds
elements that are not contiguous in memory. In the sample program, the utility
subroutine para_type_block2 given in 2.5.2.2, “Utility Subroutine:
para_type_block2” on page 32 is used. Note that you might get better
performance by packing and sending the data manually.

Figure 69. Gathering an Array to a Process (Non-Contiguous; Overlapping Buffers)

REAL a(m,n)
INTEGER, ALLOCATABLE :: itype(:), iireq(:)
INTEGER istatus(MPI_STATUS_SIZE)
...
ALLOCATE (itype(0:nprocs-1), iireq(0:nprocs-1))
DO irank = 0, nprocs - 1

CALL para_range(1, m, nprocs, irank, ista, iend)
CALL para_type_block2(1, m, 1, ista, iend, 1, n,

& MPI_REAL, itype(irank))
ENDDO
CALL para_range(1, m, nprocs, myrank, ista, iend)
...
IF (myrank == 0) THEN

DO irank = 1, nprocs - 1
72 RS/6000 SP: Practical MPI Programming

CALL MPI_IRECV(a, 1, itype(irank), irank,
& 1, MPI_COMM_WORLD, iireq(irank), ierr)

ENDDO
DO irank = 1, nprocs - 1

CALL MPI_WAIT(iireq(irank), istatus, ierr)
ENDDO

ELSE
CALL MPI_ISEND(a, 1, itype(myrank), 0,

& 1, MPI_COMM_WORLD, ireq, ierr)
CALL MPI_WAIT(ireq, istatus, ierr)

ENDIF
DEALLOCATE (itype, iireq)
...

3.5.3.2 Synchronizing Data
Sometimes you need to let all the parallel processes have up-to-date data at a
certain point in the program. This happens when you use the method mentioned
in “Pattern 1. Partial Parallelization of a DO Loop” on page 46, or when you are
debugging your parallel program (Table 84 on page 92). As in 3.5.3.1, “Gathering
Data to One Process” on page 69, there are four cases depending on whether the
data for transmission are contiguous or not and whether the send and receive
buffers overlap in memory or not. To avoid repetition of the same idea,
non-contiguous cases are not discussed.

Case 1. Synchronizing data; send and receive buffers do not overlap

Only one call of the subroutine MPI_ALLGATHERV suffices for handling this
case.

Figure 70. Synchronizing Array Elements (Non-Overlapping Buffers)

REAL a(m,n), b(m,n)
INTEGER, ALLOCATABLE :: idisp(:), jjlen(:)
...
ALLOCATE (idisp(0:nprocs-1), jjlen(0:nprocs-1))
DO irank = 0, nprocs - 1
How to Parallelize Your Program 73

CALL para_range(1, n, nprocs, irank, jsta, jend)
jjlen(irank) = m * (jend - jsta + 1)
idisp(irank) = m * (jsta - 1)

ENDDO
CALL para_range(1, n, nprocs, myrank, jsta, jend)
...
CALL MPI_ALLGATHERV(a(1,jsta), jjlen(myrank), MPI_REAL,

& b, jjlen, idisp, MPI_REAL, MPI_COMM_WORLD, ierr)
DEALLOCATE (idisp, jjlen)
...

Case 2. Synchronizing data; send and receive buffers overlap

Since you cannot use MPI_ALLGATHERV in this case, you have to broadcast
as many times as there are processes.

Figure 71. Synchronizing Array Elements (Overlapping Buffers)

REAL a(m,n)
INTEGER, ALLOCATABLE :: jjsta(:), jjlen(:)
...
ALLOCATE (jjsta(0:nprocs-1), jjlen(0:nprocs-1))
DO irank = 0, nprocs - 1

CALL para_range(1, n, nprocs, irank, jsta, jend)
jjsta(irank) = jsta
jjlen(irank) = m * (jend - jsta + 1)

ENDDO
CALL para_range(1, n, nprocs, myrank, jsta, jend)
...
DO irank = 0, nprocs - 1
CALL MPI_BCAST(a(1,jjsta(irank)), jjlen(irank), MPI_REAL,

& irank, MPI_COMM_WORLD, ierr)
ENDDO
DEALLOCATE (jjsta, jjlen)
...

The sample code given here uses MPI_BCAST, but often you get better
performance by using MPE_IBCAST at the cost of portability. MPE_IBCAST,
described in B.2.2, “MPE_IBCAST (IBM Extension)” on page 164, is a
non-blocking version of MPI_BCAST, which is included in the IBM extensions
to the MPI standard. If you use MPE_IBCAST, the italic part of the code should
be rewritten as follows.
74 RS/6000 SP: Practical MPI Programming

DO irank = 0, nprocs - 1
CALL MPE_IBCAST(a(1,jjsta(irank)),jjlen(irank),MPI_REAL,

& irank, MPI_COMM_WORLD, iireq(irank), ierr)
ENDDO
DO irank = 0, nprocs - 1

CALL MPI_WAIT(iireq(irank), istatus, ierr)
ENDDO

The integer arrays iireq() and istatus() are assumed to be allocated
appropriately. Don’t forget to call MPI_WAIT to complete data transmissions
since you are using non-blocking subroutines.

3.5.3.3 Transposing Block Distributions
Suppose that you need to change the distribution of a two-dimensional matrix
from column-wise block distribution to row-wise block distribution during the
computation.

Figure 72. Transposing Block Distributions

In Figure 72, matrix a() is assigned to three processes in the column-wise block
distribution at first. Then you change the distribution to row-wise for some reason.
This case happens when you parallelize two-dimensional FFT code, for instance.
The boundary lines of both distributions divide the matrix into nine blocks, and it
is easier to consider the data transmission in terms of these blocks. To deal with
this communication pattern, it is natural to define derived data types for each
block as shown in Figure 73 on page 76.
How to Parallelize Your Program 75

Figure 73. Defining Derived Data Types

You can use the utility subroutine described in 2.5.2.2, “Utility Subroutine:
para_type_block2” on page 32 for defining derived data types. The following code
does the job.

...
INCLUDE ’mpif.h’
PARAMETER (m=7, n=8)
REAL a(m,n)
PARAMETER (ncpu=3)
INTEGER itype(0:ncpu-1, 0:ncpu-1)
INTEGER ireq1(0:ncpu-1), ireq2(0:ncpu-1)
INTEGER istatus(MPI_STATUS_SIZE)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
DO jrank = 0, nprocs-1

CALL para_range(1, n, nprocs, jrank, jsta, jend)
DO irank = 0, nprocs-1

CALL para_range(1, m, nprocs, irank, ista, iend)
CALL para_type_block2

& (1, m, 1, ista, iend, jsta, jend, MPI_REAL, itemp)
itype(irank, jrank) = itemp

ENDDO
ENDDO
CALL para_range(1, m, nprocs, myrank, ista, iend)
CALL para_range(1, n, nprocs, myrank, jsta, jend)
...
DO irank = 0, nprocs-1

IF (irank /= myrank) THEN
CALL MPI_ISEND(a, 1, itype(irank, myrank),

& irank, 1, MPI_COMM_WORLD, ireq1(irank), ierr)
CALL MPI_IRECV(a, 1, itype(myrank, irank),

& irank, 1, MPI_COMM_WORLD, ireq2(irank), ierr)
ENDIF

ENDDO
DO irank = 0, nprocs-1

IF (irank /= myrank) THEN
CALL MPI_WAIT(ireq1(irank), istatus, ierr)
CALL MPI_WAIT(ireq2(irank), istatus, ierr)

ENDIF
ENDDO
...

Even if the source matrix and the target matrix do not overlap in memory, you
cannot use MPI_ALLTOALLV in this case.
76 RS/6000 SP: Practical MPI Programming

3.5.4 Reduction Operations
When given as a textbook exercise, it is quite easy and straightforward to
parallelize reduction operations. However in real programs, reduction operations
are likely to be overlooked when data distribution, data dependences, and other
items are receiving your attention.

...
sum1 = 0.0
sum2 = 0.0
amax = 0.0
DO i = 1, n

a(i) = a(i) + b(i)
c(i) = c(i) + d(i)
e(i) = e(i) + f(i)
g(i) = g(i) + h(i)
x(i) = x(i) + y(i)
sum1 = sum1 + a(i)
sum2 = sum2 + c(i)
IF (a(i) > amax) amax = a(i)

ENDDO
DO i = 1, n

g(i) = g(i) * sum1 + sum2
ENDDO
PRINT *, amax ...

The above code is parallelized as follows.
...
REAL works(2), workr(2)
sum1 = 0.0
sum2 = 0.0
amax = 0.0
DO i = ista, iend

a(i) = a(i) + b(i)
c(i) = c(i) + d(i)
e(i) = e(i) + f(i)
g(i) = g(i) + h(i)
x(i) = x(i) + y(i)
sum1 = sum1 + a(i)
sum2 = sum2 + c(i)
IF (a(i) > amax) amax = a(i)

ENDDO
works(1) = sum1
works(2) = sum2
CALL MPI_ALLREDUCE(works, workr, 2, MPI_REAL,

& MPI_SUM, MPI_COMM_WORLD, ierr)
sum1 = workr(1)
sum2 = workr(2)
CALL MPI_REDUCE(amax, aamax, 1, MPI_REAL,

& MPI_MAX, 0, MPI_COMM_WORLD, ierr)
amax = aamax
DO i = ista, iend

g(i) = g(i) * sum1 + sum2
ENDDO
IF (myrank == 0) THEN

PRINT *, amax
ENDIF
...
How to Parallelize Your Program 77

Since every process needs the value of sum1 and sum2, you have to use
MPI_ALLREDUCE rather than MPI_REDUCE. On the other hand, since amax is
necessary to only one process, MPI_REDUCE is sufficient for it. Note that
variables sum1 and sum2 are copied into the array works in order to reduce the
number of calls of the MPI_ALLREDUCE subroutine.

3.5.5 Superposition
Usually, the subroutines MPI_REDUCE and MPI_ALLREDUCE are used to
gather data distributed over processes and to do some computation on the way.
They are also useful for just gathering data where no computation is meant in the
first place. Let’s see how they work by looking at a sample program.

Suppose you have a matrix distributed to processes in the row-wise cyclic
distribution. Each process has reserved memory for storing the whole matrix
rather than the shrunken one. Each process does some computation on the
matrix elements assigned to it, and you need to gather the data to process 0 at
some time.

An orthodox method to gather data in this case is to define derived data types for
non-contiguous data held by each task and send the data to process 0. Or, on the
sending process, you first pack the non-contiguous data to a contiguous location
and then send the packed data to process 0. On the receiving process, you
receive the data, unpack, and copy them to proper locations. But both methods
might look cumbersome to you. Consider the MPI_REDUCE subroutine. Make
sure the matrix elements that lie outside the assigned part of the process are set
to zero.

REAL a(n,n), aa(n,n)
...
DO j = 1, n

DO i = 1, n
a(i,j) = 0.0

ENDDO
ENDDO
DO j = 1, n

DO i = 1 + myrank, n, nprocs
a(i,j) = computation

ENDDO
ENDDO
CALL MPI_REDUCE(a, aa, n*n, MPI_REAL, MPI_SUM, 0,

& MPI_COMM_WORLD, ierr)
...
78 RS/6000 SP: Practical MPI Programming

Figure 74. Superposition

Figure 74 illustrates how the parallel program gathers data in the case of n=8 and
nprocs=3. Note that although it is easy to implement the superposition method,
you should not use it when the communication overhead is a concern because
each process sends n*n elements instead of n*n/nprocs elements.

3.5.6 The Pipeline Method
The pipeline method is a technique to parallelize a loop that has loop-carried
dependences. The following is a typical loop that has a flow dependence, that is,
each iteration has to be executed strictly in order.

DO i = 1, n
x(i) = x(i-1) + 1.0

ENDDO

If you expand the loop into flat statements, it is easy to see what a flow
dependence means:

x(1) = x(0) + 1.0 (iteration 1)
x(2) = x(1) + 1.0 (iteration 2)
x(3) = x(2) + 1.0 (iteration 3)
...
How to Parallelize Your Program 79

Iteration 2 uses the value of x(1) calculated in iteration 1; thus iteration 2 has to
be executed after iteration 1 has finished, and so on.

The following program has a flow dependence that prevents you from
parallelization by naively using block distribution or cyclic distribution.

PROGRAM main
PARAMETER (mx = ..., my = ...)
DIMENSION x(0:mx,0:my)
...
DO j = 1, my

DO i = 1, mx
x(i,j) = x(i,j) + x(i-1,j) + x(i,j-1)

ENDDO
ENDDO
...

This kind of loop is seen in the forward elimination and the backward substitution
of ICCG (Incomplete Cholesky Conjugate Gradient) method that solves linear
equations with a symmetric band diagonal matrix. The dependence involved in
program main is illustrated in Figure 75 (a).

Figure 75. Data Dependences in (a) Program main and (b) Program main2

Note that parallelizing the following loop is quite different from parallelizing
program main because this loop has no loop-carried dependences. You must
make sure that each process has the data it needs, especially the values of
x(i,j) lying just outside the boundary. Then each process can start calculating
y(i,j) in parallel.

DO j = 1, my
DO i = 1, mx

y(i,j) = x(i,j) + x(i-1,j) + x(i,j-1)
ENDDO

ENDDO

If you parallelize program main by column-wise block distribution as shown in
Figure 75 (a), each process needs to get its left neighbor’s boundary elements. In
80 RS/6000 SP: Practical MPI Programming

addition, the process has to use those boundary elements after its left neighbor
process has updated them.

Program main2 below has less complex dependence as shown in Figure 75 (b). If
you don’t have to consider another part of the program, you should divide the
matrix in row-wise block distribution so that the flow dependence is confined
within each process. But sometimes you may have to use column-wise block
distribution considering the performance of another part of the program.

PROGRAM main2
PARAMETER (mx = ..., my = ...)
DIMENSION x(mx,0:my)
...
DO j = 1, my

DO i = 1, mx
x(i,j) = x(i,j) + x(i,j-1)

ENDDO
ENDDO
...

The following discusses how program main is parallelized using the pipeline
method. Suppose that you have three processes and matrix x() is assigned to
processes using column-wise block distribution (Figure 76 on page 82 (a)). The
idea is that within each process you divide the block by the row into even smaller
blocks. In the figure, a block size of two (iblock=2) is chosen, and the blocks with
the same number are executed in parallel as you see below.

Because of the dependence, each process cannot update the matrix elements at
once. Instead, at first, process 0 does the computation of the first small block
(block 1 in the left-most column), which provides the data necessary for process 1
to do the computation of block 2 in the middle column. While process 0 is working
on block 1, processes 1 and 2 are just waiting, that is, the degree of parallelism is
one.

Next, process 0 sends the boundary elements of block 1 to process 1. The
number of elements to be sent is iblock. Then process 0 works on block 2 in the
left-most column, and at the same time, process 1 does block 2 in the middle
column. Therefore, the degree of parallelism is two. Likewise, in the next step,
after process 0 sends iblock boundary elements of block 2 to process 1, and
process 1 sends iblock boundary elements of block 2 to process 2, all the three
processes start processing block 3 lying in each column. At this time, the degree
of parallelism becomes three.
How to Parallelize Your Program 81

Figure 76. The Pipeline Method

After blocks 5 are processed, the degree of parallelism decreases to two (block 6)
and then to one (block 7). The following is the parallelized version of program
main. Note the way the processes proceed in the pipelined fashion. Each process
waits for data to be sent from the left neighbor, does computation, and then sends
data to the right neighbor. By use of MPI_PROC_NULL as the destination,
process 0 and process nprocs-1 are treated appropriately. In particular, process 0
can start its job without waiting for data to be delivered to it.

PROGRAM mainp
INCLUDE ’mpif.h’
PARAMETER (mx = ..., my = ...)
DIMENSION x(0:mx,0:my)
INTEGER istatus(MPI_STATUS_SIZE)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
CALL para_range(1, my, nprocs, myrank, jsta, jend)
inext = myrank + 1
IF (inext == nprocs) inext = MPI_PROC_NULL
iprev = myrank - 1
IF (iprev == -1) iprev = MPI_PROC_NULL
iblock = 2
...
DO ii = 1, mx, iblock

iblklen = MIN(iblock, mx - ii + 1)
CALL MPI_IRECV(x(ii, jsta - 1), iblklen, MPI_REAL,

& iprev, 1, MPI_COMM_WORLD, ireqr, ierr)
CALL MPI_WAIT(ireqr, istatus, ierr)
DO j = jsta, jend

DO i = ii, ii + iblklen - 1
x(i,j) = x(i,j) + x(i-1,j) + x(i,j-1)

ENDDO
82 RS/6000 SP: Practical MPI Programming

ENDDO
CALL MPI_ISEND(x(ii,jend), iblklen, MPI_REAL,

& inext, 1, MPI_COMM_WORLD, ireqs, ierr)
CALL MPI_WAIT(ireqs, istatus, ierr)

ENDDO
...

The above program is best understood by putting yourself in the place of the
process and by thinking what you have to do, rather than by playing the role of
the conductor who orchestrates the processes. One remark about the program:
the calls of MPI_WAIT immediately follow MPI_IRECV and MPI_ISEND, which is
logically equivalent to using blocking subroutines. Is there any danger of
deadlocks? (See “Case 2. Receive first and then send” on page 27.) The answer
is no , because there is always one process (process 0) that does not receive but
only sends.

Figure 77. Data Flow in the Pipeline Method

In Figure 77, data transmissions are completed from left to right. In an open string
topology like this, there will not be a deadlock as long as one-directional
communication is concerned. On the other hand, in a closed string topology,
deadlock may occur even in the case of one-directional communication. (See
3.5.7, “The Twisted Decomposition” on page 83.)

Figure 78. Block Size and the Degree of Parallelism in Pipelining

In choosing the block size (iblock), you should be aware of the trade-off between
the number of data transmissions and the average degree of parallelism. In
Figure 78, the shaded blocks mean that they can be processed by the maximum
degree of parallelism. Apparently, smaller block size implies a higher degree of
parallelism. On the other hand, the smaller the block size is, the more often the
data transmissions will take place, thus higher communication overhead due to
latency. You may have to find an optimal block size by trial and error.

3.5.7 The Twisted Decomposition
In the following program, Loop A is flow dependent on the first dimension of
matrix x(), and Loop B on the second dimension (See also Figure 79 (a) and (b)).
The two types of loops appear in the program alternately, which can be seen in
How to Parallelize Your Program 83

the ADI (alternating direction implicit) method. Whether you distribute the matrix
row-wise or column-wise, you cannot escape from the dependences on both
dimensions.

PROGRAM main
PARAMETER (mx = ..., my = ...)
REAL x(0:mx,0:my)
...

! Loop A
DO j = 1, my

DO i = 1, mx
x(i,j) = x(i,j) + x(i-1,j)

ENDDO
ENDDO

! Loop B
DO j = 1, my

DO i = 1, mx
x(i,j) = x(i,j) + x(i,j-1)

ENDDO
ENDDO
...
END

One way to parallelize this program is to use the pipeline method described in
3.5.6, “The Pipeline Method” on page 79, but the average degree of parallelism
might not meet your performance requirement. Of course, you can increase the
degree of parallelism by using a smaller block size in the pipeline method, but it
makes the communication overhead increase. The twisted decomposition method
described below allows all processes to start computations at once without any
stand-by time for some processes, thereby it provides better load balance than
the pipeline method. The downside is that it is difficult and time-consuming to
write the program because the data is distributed to processes in a complex way.

Figure 79. The Twisted Decomposition

In applying the twisted decomposition method, rows and columns of the
two-dimensional array x() are divided into nprocs blocks, thus making nprocs2

blocks, where nprocs is the number of processes. Apply the block coordinate
system (I, J) in order to identify the location of blocks (Figure 79 (c)). In the
twisted decomposition, block (I, J) is assigned to process (I - J + nprocs)

modulo nprocs. In Loop A, all processes do computation of the row I=0, then I=1,
84 RS/6000 SP: Practical MPI Programming

and finally I=2. In Loop B, all processes do computation of the column J=0, then
J=1, and finally J=2. Before proceeding to the next block, each process sends and
receives boundary elements to/from neighboring processes. Note that every row
and every column in the block coordinate system contains all ranks so that the
degree of parallelism is always the number of processes. The following is the
parallelized version of the program.

PROGRAM main
INCLUDE ’mpif.h’
INTEGER istatus(MPI_STATUS_SIZE)
INTEGER, ALLOCATABLE :: is(:), ie(:), js(:), je(:)
PARAMETER (mx = ..., my = ..., m = ...)
DIMENSION x(0:mx,0:my)
DIMENSION bufs(m),bufr(m)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
ALLOCATE (is(0:nprocs-1), ie(0:nprocs-1))
ALLOCATE (js(0:nprocs-1), je(0:nprocs-1))
DO ix = 0, nprocs - 1

CALL para_range(1, mx, nprocs, ix, is(ix), ie(ix))
CALL para_range(1, my, nprocs, ix, js(ix), je(ix))

ENDDO
inext = myrank + 1
IF (inext == nprocs) inext = 0
iprev = myrank - 1
IF (iprev == -1) iprev = nprocs - 1
...

! Loop A
DO ix = 0, nprocs - 1

iy = MOD(ix + myrank, nprocs)
ista = is(ix)
iend = ie(ix)
jsta = js(iy)
jend = je(iy)
jlen = jend - jsta + 1
IF (ix /= 0) THEN

CALL MPI_IRECV(bufr(jsta), jlen, MPI_REAL, inext, 1,
& MPI_COMM_WORLD, ireqr, ierr)

CALL MPI_WAIT(ireqr, istatus, ierr)
CALL MPI_WAIT(ireqs, istatus, ierr)
DO j = jsta, jend

x(ista-1,j) = bufr(j)
ENDDO

ENDIF
DO j = jsta, jend

DO i = ista, iend
x(i,j) = x(i,j) + x(i-1,j)

ENDDO
ENDDO
IF (ix /= nprocs - 1) THEN

DO j = jsta, jend
bufs(j) = x(iend,j)

ENDDO
CALL MPI_ISEND(bufs(jsta), jlen, MPI_REAL, iprev, 1,

& MPI_COMM_WORLD, ireqs, ierr)
ENDIF

ENDDO
! Loop B

DO iy = 0, nprocs - 1
ix = MOD(iy + nprocs - myrank, nprocs)
ista = is(ix)
iend = ie(ix)
jsta = js(iy)
jend = je(iy)
ilen = iend - ista + 1
IF (iy /= 0) THEN

CALL MPI_IRECV(x(ista,jsta-1), ilen, MPI_REAL, iprev, 1,
& MPI_COMM_WORLD, ireqr, ierr)

CALL MPI_WAIT(ireqr, istatus, ierr)
CALL MPI_WAIT(ireqs, istatus, ierr)

ENDIF
DO j = jsta, jend

DO i = ista, iend
x(i,j) = x(i,j) + x(i,j-1)

ENDDO
How to Parallelize Your Program 85

ENDDO
IF (iy /= nprocs - 1) THEN

CALL MPI_ISEND(x(ista,jend), ilen, MPI_REAL, inext, 1,
& MPI_COMM_WORLD, ireqs, ierr)

ENDIF
ENDDO
DEALLOCATE (is, ie)
DEALLOCATE (js, je)
...
CALL MPI_FINALIZE(ierr)
END

Be careful about the location of the MPI_WAIT statements (shown in bold face in
the program) corresponding to MPI_ISEND, which avoids deadlock. First, confirm
that data transmissions take place correctly among processes. Consider Loop B,
for example. The structure of Loop B is:

! Loop B
DO iy = 0, nprocs - 1

...
IF (iy /= 0) THEN

Receive
Wait for receive to complete
Wait for send to complete

ENDIF
...
IF (iy /= nprocs - 1) THEN

Send
ENDIF

ENDDO

In this example, there is a chain where a certain process always receives data
from a specific process that points to it, as shown in Figure 80, and always sends
data to a specific process which is pointed to by that process in the figure.

Figure 80. Data Flow in the Twisted Decomposition Method

The above loop is expanded into flat statements as shown in Figure 81. It is easy
to see that the program works correctly and that deadlocks will not occur.
86 RS/6000 SP: Practical MPI Programming

Figure 81. Loop B Expanded

Next, consider what happens if MPI_WAIT is called just after MPI_ISEND. In that
case, essentially every process calls blocking subroutines MPI_SEND and
MPI_RECV, in this order, which may cause deadlock due to a shortage of the
system buffer for sending the data. See the arguments in “Case 1. Send first and
then receive” on page 26. The root cause of the problem is that all processes do
blocking send and then blocking receive in this order and that the topology of
processes is closed in terms of data flow (see Figure 80). These two conditions
constitute the possible deadlocks. Note that in the pipeline method (refer 3.5.6,
“The Pipeline Method” on page 79), the latter condition is not satisfied, that is, the
process topology is open.

3.5.8 Prefix Sum
In the pipeline method and the twisted decomposition method, the loops were
nested. Therefore, you have a chance to parallelize. But, what if a non-nested
loop has a loop-carried dependence? In one dimension, the pipeline method is
only a serial processing.

PROGRAM main
PARAMETER (n = ...)
REAL a(0:n), b(n)
...
DO i = 1, n

a(i) = a(i-1) + b(i)
ENDDO
...

The dependence involved in the above program is illustrated in Figure 82 on page
88. You cannot get parallel speed-up just by distributing matrices a().
How to Parallelize Your Program 87

Figure 82. Loop-Carried Dependence in One Dimension

The above program can be parallelized by the technique of Prefix Sum. Here is
how it works.

On the exit of the loop, the array a() has the following values:

a(1) = a(0) + b(1)
a(2) = a(0) + b(1) + b(2)
a(3) = a(0) + b(1) + b(2) + b(3)
...
a(n) = a(0) + b(1) + b(2) + b(3) + ... + b(n)

So, the loop is equivalent to calculating for , thus the
name of prefix sum.

The operation does not need to be addition. In general, a loop with the structure:

DO i = 1, n
a(i) = a(i-1) op b(i)

ENDDO

where op is a binary operator, can be parallelized by the prefix sum technique, if
the combination of the data type of a() and the operator op is one of the
predefined combinations for MPI_REDUCE (or MPI_SCAN). See Table 11 on
page 181 for the list of combinations. Allowable combinations may be extended
by including user-defined operators (“MPI_OP_CREATE” on page 187) but
further discussion is omitted here.

Figure 83. Prefix Sum

ak a= 0 bi

1 i k≤ ≤

∑+ 1 k n≤ ≤
88 RS/6000 SP: Practical MPI Programming

In the prefix sum method, the arrays a() and b() are block-distributed to
processes and each process computes a partial sum of the array b(). The prefix
sum of these partial sums is obtained by the subroutine MPI_SCAN, and it is
used in calculating the starting element of the array by each process. Figure 83
shows a desirable behavior of processes and data, where the prefix sum obtained
by MPI_SCAN is shifted among processes. But in the following program, this data
transmission is replaced by a local calculation. For example, the process with
rank 1 in Figure 83 has the values of S1 and (S0+S1) after MPI_SCAN, so instead
of getting the value of S0 from process 0, process 1 calculates it as (S0+S1)-S1.

PROGRAM main
INCLUDE ’mpif.h’
PARAMETER (n = ...)
REAL a(0:n), b(n)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
CALL para_range(1, n, nprocs, myrank, ista, iend)
...
sum = 0.0
DO i = ista, iend

sum = sum + b(i)
ENDDO
IF (myrank == 0) THEN

sum = sum + a(0)
ENDIF
CALL MPI_SCAN(sum, ssum, 1, MPI_REAL, MPI_SUM,

& MPI_COMM_WORLD, ierr)
a(ista) = b(ista) + ssum - sum
IF (myrank == 0) THEN

a(ista) = a(ista) + a(0)
ENDIF
DO i = ista+1, iend

a(i) = a(i-1) + b(i)
ENDDO
...

Note that in the parallelized program, the total number of additions is roughly
doubled compared with the serial program because there are two DO loops, one
before and after the call of MPI_SCAN. Therefore, if the number of processes is
small, the prefix sum method is not effective.

3.6 Considerations in Parallelization

So far, the basic techniques of parallelizing programs have been discussed,
concentrating on local structures such as DO loops. In the remainder of this
chapter, advice and tips are given in the global point of view of parallelization.

3.6.1 Basic Steps of Parallelization
You may want to parallelize an existing serial program, or you may want to write a
parallel program from scratch. Here are the basic steps required to parallelize a
serial program.

1. Tune the serial program
How to Parallelize Your Program 89

Before parallelizing the program, tune the hot spots. Hot spots can be
identified by the prof, gprof, or tprof command. For more information on serial
tuning, see AIX Version 4 Optimization and Tuning Guide for FORTRAN, C,
and C++, SC09-1705, RS/6000 Scientific and Technical Computing: POWER3
Introduction and Tuning Guide, SG24-5155, or K. Dowd and C. Severance,
High Performance Computing (2nd Edition), O’Reilly (1998).

2. Consider the outline of parallelization and the target performance

Get the profile of the tuned serial program. If the program has a sharp profile,
that is, only a small part of your program is consuming most of the CPU time,
it might be sufficient to parallelize only that part. On the other hand, if the
program has a flat profile, that is, there are no predominant routines and CPU
time is consumed evenly throughout the program, you may have to parallelize
the overall program. Remind yourself of the patterns of parallelization
described in 3.2, “Three Patterns of Parallelization” on page 46. At the same
time, estimate by using the Amdahl’s law how much faster the program
becomes when parallelized (3.1, “What is Parallelization?” on page 41), and
check if the estimated running time meets your requirements. For this
purpose, you have to know how much of the program can be run in parallel
and how much communication overhead will be introduced by parallelization.
Some experiments may have to be done in order to get the latter figure.

3. Determine your strategy for parallelization

• For nested loops, which loop to parallelize and how? (Block distribution,
cyclic distribution, and so forth.)

• Which scalar variables and arrays must be transmitted

• Whether to shrink arrays or not

• Whether to replace part of the program by Parallel ESSL subroutines

4. Parallelize the program

Use the techniques provided previously in this chapter. The following
describes two more techniques; The use of MODULE statements of Fortran 90
and an incremental parallelization method.

MODULE statements

Suppose there are a number of subroutines that are involved in parallelization.
By using MODULE statements, you can simplify the passing of arguments
related to parallelization. For example, consider the serial program below.

PROGRAM main
...
n = ...
CALL sub1(n)
CALL sub2(n)
...
END

SUBROUTINE sub1(n)
...
DO i = 1, n

...
ENDDO
...
END
90 RS/6000 SP: Practical MPI Programming

SUBROUTINE sub2(n)
...
DO i = 1, n

...
ENDDO
...
END

This program is parallelized using a module as follows.

MODULE para
INCLUDE ’mpif.h’
INTEGER nprocs, myrank, ista, iend
INTEGER istatus(MPI_STATUS_SIZE)
END

PROGRAM main
USE para
...
n = ...
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
CALL para_range(1, n, nprocs, myrank, ista, iend)
CALL sub1(n)
CALL sub2(n)
...
CALL MPI_FINALIZE(ierr)
END

SUBROUTINE sub1(n)
USE para
...
DO i = ista, iend

...
ENDDO
...
END

SUBROUTINE sub2(n)
USE para
...
DO i = ista, iend

...
ENDDO
...
END

An advantage of modules is that, unlike COMMON blocks, modules can
contain allocatable arrays. IMPLICIT declaration in a MODULE block is only
effective to the variables within the block. It is not inherited to the procedures
that use the MODULE block. In the program, the MODULE block should
appear before the procedures that use it. The USE statement can only appear
prior to all other statements except for comment lines in the procedure. See
the Fortran language reference for details.
How to Parallelize Your Program 91

Incremental parallelization

Suppose that you are going to parallelize the code below. The outer DO loop
is ticking the time steps, which encloses three DO loops that contribute to the
running time almost equally. After the time-ticking loop, the contents of array
x() is written to a file. This kind of code is often seen in the finite difference
method. Assume that there is no parallelism in the outer loop so that you have
to parallelize all the inner loops as in “Pattern 2. Parallelization Throughout a
DO Loop” on page 47. Array w() is only used as a working area and does not
carry data beyond time steps. Also assume that if the arrays are
block-distributed to processes, the data dependence is such that only
boundary elements need to be exchanged between adjacent processes.

...
DO t = t1, tm

DO i = 1, n
...
b(i) = a(i+1) + ...

ENDDO
DO i = 1, n

...
a(i) = b(i+1) + ...
w(i) = ...

ENDDO
DO i = 1, n

...

... = w(i+1)
x(i) = ...

ENDDO
ENDDO
WRITE(10) x
...

A skillful programmer could parallelize the inner loops all at once and the
parallelized program might give the correct answer. But if the answer is found
to be wrong, it is quite difficult to debug the code. As an alternative approach,
an incremental method is proposed below.

Figure 84. Incremental Parallelization
92 RS/6000 SP: Practical MPI Programming

Instead of parallelizing all the loops at once, parallelize one loop at a time from
top to bottom. After the parallelized loop, do some message-passing in order
to make sure that in the unparallelized part of the program all processes have
the up-to-date data.

In Figure 84 on page 92, these temporary message-passing statements are
marked with a bullet, which will be removed as the parallelization proceeds.
Take a look at Figure 84 (b), where the first loop is parallelized by the block
distribution. By the time the first loop is executed, array a() is modified in the
previous time step. Therefore, a presupposed subroutine shift is called
before entering the first loop, which is not a temporary modification. After the
loop, each process has the valid elements of array b() only in the assigned
range. Since later in the same time step a process may need elements of b()
calculated by another process, the array is synchronized among processes by
use of a presupposed subroutine syncdata. Note that syncdata appears just
after the parallelized part. For the implementation of syncdata, see 3.5.3.2,
“Synchronizing Data” on page 73.

The incremental steps continues in this way until you parallelize all the loops
(Figure 84 (b)-(d)). Note that you can check the correctness of the program
after any step of this method by compiling and running the program. After you
have parallelized all the inner DO loops, add a statement that gathers array
x() to process 0 after the outer DO loop (Figure 84 (e)). Run the parallelized
program then check the answer.

3.6.2 Trouble Shooting
The following describes typical symptoms and a list of things that might solve the
problem.

Parallelized program does not start

• Are the environment variables and the command line options correct for
parallel execution? (See Appendix A, “How to Run Parallel Jobs on RS/6000
SP” on page 155.)

• Is the communication network up and running? If you are using RS/6000 SP,
has the SP switch network started, or are any nodes fenced?

• Is the job control subsystem working? On RS/6000 SP, has the root user
issued jm_start (before Parallel Environment 2.3), or is LoadLeveler correctly
configured and running?

Parallelized program ends abnormally

• Have you included mpif.h in the program that uses MPI subroutines?

• Are the arguments of all the MPI subroutine calls correct? Is the argument for
the Fortran return code (ierr) missing?

• Have you defined status objects, which may be used in MPI_RECV,
MPI_WAIT, and so on, as INTEGER istatus(MPI_STATUS_SIZE)?

• You can get more run-time information by raising the value of the
MP_INFOLEVEL environment variable. As mentioned in A.5, “Standard
Output and Standard Error” on page 158, the default value of MP_INFOLEVEL
is 1, so specify 2 or larger.
How to Parallelize Your Program 93

Parallelized program starts but becomes inactive

• If the input from the standard input (stdin) exceeds 32 KB, set
MP_HOLD_STDIN=yes. Otherwise, the program halts while reading from stdin.

• Are there any communication deadlocks? See the arguments in 2.4.3,
“Bidirectional Communication” on page 26.

Parallelized program gives wrong answer

• Have you parallelized a loop that does not have parallelism? A very simple
check, although not sufficient, is to see if the program gives the same answer
when the iterations are reversed in the loop in question.

• If your executable is located on a local file system in the distributed
environment, have you copied the latest executable to each node? You might
be using an old executable with the same name.

• Are arrays distributed correctly to processes? For example, if the block
distribution is used, check ista and iend for all processes. To show the
standard output of all processes together with their ranks, specify
MP_LABELIO=yes and MP_STDOUTMODE=ordered or unordered. See also A.5,
“Standard Output and Standard Error” on page 158.

• If you are using non-blocking communication subroutines such as MPI_ISEND
and MPI_IRECV, have you issued MPI_WAIT before reusing the
communication buffer?

• Some numerical errors may arise due to parallelization because the order of
computations might have changed. For example, if you use MPI_REDUCE to
get a sum of local variables, the result may be different (within rounding
errors) from what you get when you calculate it serially.

• Unless you pay special attention in parallelization, a program using random
numbers will produce a different answer when parallelized. That’s because the
sequence of random numbers may be different from what the serial program
accesses. See also 4.5, “Monte Carlo Method” on page 131.

3.6.3 Performance Measurements
This section discusses how to measure the performance of parallel programs and
how to evaluate them.
94 RS/6000 SP: Practical MPI Programming

Figure 85. Parallel Speed-Up: An Actual Case

The above figure is a copy of Figure 31 on page 42. You need an index to
measure how well parallel programs perform. In production applications, what
matters is the elapsed time, so the following index is often used.

Elapsed time can be measured by the built-in shell command time or the AIX
command timex. Note that the dividend in the formula is not the elapsed time of
the parallel program run with one process. Even executed with one process,
parallel programs have overhead for initializing environment, such as calculating
the range of loop variables.

In the ideal case, , but because part of the program might not be
parallelized and the parallelized program has communication overhead (see
Figure 85), the speed-up is usually less than p.

The previous note suggests that the speed-up ratio is not an absolute measure.
Here is another situation. Suppose you have tuned a serial program ser.f and got
sertune.f. Both programs are completely parallelizable and you have para.f for
ser.f and paratune.f for sertune.f. Suppose that the serial tuning does not
change the amount of communication of the parallelized program, so para.f and
paratune.f involve the same amount of communication overhead. Therefore the

Speed-up p() Elapsed time of the serial program
Elapsed time of the parallel program with p processes

---=

Speed-up p() p=

Note that the speed-up ratio defined above is relative to the hardware
specification that you are using. On different hardware, the ratio of the
computation-dependent part and communication-dependent part in Figure 85
may change. For instance, consider a hardware that has the same CPU but a
network that is twice as slow. In such a case, the speed-up ratio also varies,
even if you run the same serial and parallel programs.

Important
How to Parallelize Your Program 95

impact of communication overhead is larger in paratune.f and the speed-up ratio
is worse.

Figure 86. Speed-Up Ratio for Original and Tuned Programs

Figure 86 shows a concrete example. You tuned ser.f faster by a factor of 2.5.
Both ser.f and sertune.f are completely parallelized, but with the same
communication overhead. The speed-up ratio of a four-process run for
ser.f/para.f is 100/(25+5)=3.33, whereas that of sertune.f/paratune.f is
40/(10+5)=2.67. The lesson from this example is, “Don’t focus on the speed-up
ratio you’ve got. Stick to the elapsed time!”

When measuring the elapsed time of a parallel program, be aware that if the
parallel executable is located on a shared file system, the time for loading the
executable may vary significantly from process to process due to I/O and network
contention.

When you are parallelizing a program, you may want to know the elapsed time of
a particular section of the program. If your concern is the time spent by the
parallel job as a whole, do as the following program shows.

PROGRAM main
REAL*8 elp1, elp2, rtc
...
CALL MPI_BARRIER(MPI_COMM_WORLD, ierr)
elp1 = rtc()
This section is measured.
CALL MPI_BARRIER(MPI_COMM_WORLD, ierr)
elp2 = rtc()
PRINT *, ’Elapsed time (sec) =’, elp2 - elp1
...
END

The rtc intrinsic function of XL Fortran returns a REAL*8 value of the number of
seconds since the initial value of the machine real-time clock.

If you are interested in the load balance of the processes, you have to measure
the elapsed time for each process:

PROGRAM main
REAL*8 elp1, elp2, rtc
96 RS/6000 SP: Practical MPI Programming

...
CALL MPI_BARRIER(MPI_COMM_WORLD, ierr)
elp1 = rtc()
This section is measured.
elp2 = rtc()
PRINT *, ’Elapsed time (sec) =’, elp2 - elp1
...
END

Figure 87. Measuring Elapsed Time

Figure 87 illustrates how each of the above time-measuring jobs work.
How to Parallelize Your Program 97

98 RS/6000 SP: Practical MPI Programming

Chapter 4. Advanced MPI Programming

This chapter covers parallelizing programs that have more complex dependences
and are closer to production applications than the programs that were discussed
previously in this publication. As long as space permits, the source code is
presented so that you can use parts of the code when you need to parallelize
your own programs.

4.1 Two-Dimensional Finite Difference Method

Programs using the two-dimensional finite difference method (FDM) can be
parallelized by generalizing the case discussed in Chapter 3.5.2,
“One-Dimensional Finite Difference Method” on page 67. You have to decide how
to distribute the matrices considering the amount of data transmitted and the
continuity of matrix elements for transmission. See Chapter 3.4.5, “Parallelizing
Nested Loops” on page 61 for details. The following program is considered for
parallelization in this section. Different values of m and n may be chosen for each
method of distribution.

PROGRAM main
IMPLICIT REAL*8 (a-h,o-z)
PARAMETER (m = 6, n = 9)
DIMENSION a(m,n), b(m,n)
DO j = 1, n

DO i = 1, m
a(i,j) = i + 10.0 * j

ENDDO
ENDDO
DO j = 2, n - 1

DO i = 2, m - 1
b(i,j) = a(i-1,j) + a(i,j-1) + a(i,j+1) + a(i+1,j)

ENDDO
ENDDO
END

The above program is a skeleton of the two-dimensional FDM, where coefficients
and the enclosing loop for convergence are omitted. Data dependences exist in
both dimensions. For a one-dimensional FDM, you usually decide whether to use
column-wise block distribution or row-wise block distribution based on the shape
of the matrix, because the distribution decides the amount of data exchanged
between adjacent processes, which you want to minimize.

For a two-dimensional FDM, three ways of distributing the arrays are possible.
Namely, column-wise block distribution, row-wise block distribution, and block
distribution in both dimensions.

4.1.1 Column-Wise Block Distribution
In column-wise block distribution, the boundary elements between processes are
contiguous in memory. In the parallelized program, a utility subroutine para_range

(Chapter 3.4.1, “Block Distribution” on page 54) is called to calculate the range
jsta..jend of each process. The program does not use the technique of a
shrinking array. When you use it, each process needs to allocate a(1:m,

jsta-1:jend+1) to accommodate data sent from neighboring processes. More
strictly, a(1:m, MAX(1,jsta-1):MIN(n,jend+1)) would be enough.
© Copyright IBM Corp. 1999 99

Figure 88. Two-Dimensional FDM: Column-Wise Block Distribution

PROGRAM main
INCLUDE ’mpif.h’
IMPLICIT REAL*8 (a-h,o-z)
PARAMETER (m = 6, n = 9)
DIMENSION a(m,n), b(m,n)
INTEGER istatus(MPI_STATUS_SIZE)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
CALL para_range(1, n, nprocs, myrank, jsta, jend)
jsta2 = jsta
jend1 = jend
IF (myrank == 0) jsta2 = 2
IF (myrank == nprocs - 1) jend1 = n - 1
inext = myrank + 1
iprev = myrank - 1
IF (myrank == nprocs - 1) inext = MPI_PROC_NULL
IF (myrank == 0) iprev = MPI_PROC_NULL
DO j = jsta, jend

DO i = 1, m
a(i,j) = i + 10.0 * j

ENDDO
ENDDO
CALL MPI_ISEND(a(1,jend) ,m,MPI_REAL8,inext,1,MPI_COMM_WORLD,isend1,ierr)
CALL MPI_ISEND(a(1,jsta) ,m,MPI_REAL8,iprev,1,MPI_COMM_WORLD,isend2,ierr)
CALL MPI_IRECV(a(1,jsta-1),m,MPI_REAL8,iprev,1,MPI_COMM_WORLD,irecv1,ierr)
CALL MPI_IRECV(a(1,jend+1),m,MPI_REAL8,inext,1,MPI_COMM_WORLD,irecv2,ierr)
CALL MPI_WAIT(isend1, istatus, ierr)
CALL MPI_WAIT(isend2, istatus, ierr)
CALL MPI_WAIT(irecv1, istatus, ierr)
CALL MPI_WAIT(irecv2, istatus, ierr)
DO j = jsta2, jend1

DO i = 2, m - 1
b(i,j) = a(i-1,j) + a(i,j-1) + a(i,j+1) + a(i+1,j)

ENDDO
ENDDO
CALL MPI_FINALIZE(ierr)
END

If there are several matrices that have the same dependence as a(), you should
write a subroutine for the data transmission and replace the statements printed in
italics in the above program by a call to that subroutine.

4.1.2 Row-Wise Block Distribution
In row-wise block distribution, the boundary elements between processes are not
contiguous in memory. You should either use derived data types representing the
boundary elements, or write code for packing data, sending/receiving it, and
unpacking it. The former option may produce a clean code that is easy to read
100 RS/6000 SP: Practical MPI Programming

and maintain, but as mentioned in Chapter 2.5, “Derived Data Types” on page 28,
using derived data types may result in less performance than the hand-coded
program. In the sample program that follows, the hand-coded option is chosen.

Figure 89. Two-Dimensional FDM: Row-Wise Block Distribution

PROGRAM main
INCLUDE ’mpif.h’
IMPLICIT REAL*8 (a-h,o-z)
PARAMETER (m = 12, n = 3)
DIMENSION a(m,n), b(m,n)
DIMENSION works1(n), workr1(n), works2(n), workr2(n)
INTEGER istatus(MPI_STATUS_SIZE)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
CALL para_range(1, m, nprocs, myrank, ista, iend)
ista2 = ista
iend1 = iend
IF (myrank == 0) ista2 = 2
IF (myrank == nprocs - 1) iend1 = m-1
inext = myrank + 1
iprev = myrank - 1
IF (myrank == nprocs - 1) inext = MPI_PROC_NULL
IF (myrank == 0) iprev = MPI_PROC_NULL
DO j = 1, n

DO i = ista, iend
a(i,j) = i + 10.0 * j

ENDDO
ENDDO
IF (myrank /= nprocs - 1) THEN

DO j = 1, n
works1(j) = a(iend,j)

ENDDO
ENDIF
IF (myrank /= 0) THEN

DO j = 1, n
works2(j) = a(ista,j)

ENDDO
ENDIF
CALL MPI_ISEND(works1,n,MPI_REAL8,inext,1,MPI_COMM_WORLD,isend1,ierr)
CALL MPI_ISEND(works2,n,MPI_REAL8,iprev,1,MPI_COMM_WORLD,isend2,ierr)
CALL MPI_IRECV(workr1,n,MPI_REAL8,iprev,1,MPI_COMM_WORLD,irecv1,ierr)
CALL MPI_IRECV(workr2,n,MPI_REAL8,inext,1,MPI_COMM_WORLD,irecv2,ierr)
CALL MPI_WAIT(isend1, istatus, ierr)
CALL MPI_WAIT(isend2, istatus, ierr)
CALL MPI_WAIT(irecv1, istatus, ierr)
CALL MPI_WAIT(irecv2, istatus, ierr)
IF (myrank /= 0) THEN

DO j = 1, n
a(ista-1,j) = workr1(j)
Advanced MPI Programming 101

ENDDO
ENDIF
IF (myrank /= nprocs - 1) THEN

DO j = 1, n
a(iend+1,j) = workr2(j)

ENDDO
ENDIF
DO j = 2, n - 1

DO i = ista2, iend1
b(i,j) = a(i-1,j) + a(i,j-1) + a(i,j+1) + a(i+1,j)

ENDDO
ENDDO
CALL MPI_FINALIZE(ierr)
END

4.1.3 Block Distribution in Both Dimensions (1)
As illustrated in Figure 63 on page 66, the amount of data transmitted might be
minimized when you divide the matrix in both dimensions. Therefore, you must
take into account the size of the matrix and the number of processes to find the
best way to divide the matrix. In using this distribution, it is often the case that you
know the number of processes in advance. In the sample program, the number of
processes is assumed to be nine, and the program explicitly uses this value.

Figure 90. Two-Dimensional FDM: The Matrix and the Process Grid

Matrix a() is distributed to nine processes as shown in Figure 90 (a), where the
number in the matrix indicates the rank of the process that the element belongs
to. For looking up adjacent processes quickly, a process grid matrix itable() is
prepared. In Figure 90 (b), null stands for MPI_PROC_NULL, which means that if
a message is directed to it, actual data transmission will not take place. In the
program, each process has its coordinate (myranki,myrankj) in the process grid.
For example, the coordinate of process 7 is (2,1). Each process can find its
neighbors by accessing itable(myranki , myrankj).1± 1±
102 RS/6000 SP: Practical MPI Programming

Figure 91. Two-Dimensional FDM: Block Distribution in Both Dimensions (1)

Figure 91 illustrates how boundary elements are exchanged among processes.

PROGRAM main
INCLUDE ’mpif.h’
IMPLICIT REAL*8 (a-h,o-z)
PARAMETER (m = 12, n = 9)
DIMENSION a(m,n), b(m,n)
DIMENSION works1(n), workr1(n), works2(n), workr2(n)
INTEGER istatus(MPI_STATUS_SIZE)
Advanced MPI Programming 103

PARAMETER (iprocs = 3, jprocs = 3)
INTEGER itable(-1:iprocs, -1:jprocs)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
IF (nprocs /= iprocs * jprocs) THEN

PRINT *,’=== Error ===’
STOP

ENDIF
DO j = -1, jprocs

DO i = -1, iprocs
itable(i,j) = MPI_PROC_NULL

ENDDO
ENDDO
irank = 0
DO i = 0, iprocs - 1

DO j = 0, jprocs - 1
itable(i,j) = irank
IF (myrank == irank) THEN

myranki = i
myrankj = j

ENDIF
irank = irank + 1

ENDDO
ENDDO
CALL para_range(1, n, jprocs, myrankj, jsta, jend)
jsta2 = jsta
jend1 = jend
IF (myrankj == 0) jsta2 = 2
IF (myrankj == jprocs - 1) jend1 = n - 1
CALL para_range(1, m, iprocs, myranki, ista, iend)
ista2 = ista
iend1 = iend
IF (myranki == 0) ista2 = 2
IF (myranki == iprocs - 1) iend1 = m - 1
ilen = iend - ista + 1
jlen = jend - jsta + 1
jnext = itable(myranki, myrankj + 1)
jprev = itable(myranki, myrankj - 1)
inext = itable(myranki + 1, myrankj)
iprev = itable(myranki - 1, myrankj)
DO j = jsta, jend

DO i = ista, iend
a(i,j) = i + 10.0 * j

ENDDO
ENDDO
IF (myranki /= iprocs - 1) THEN

DO j = jsta, jend
works1(j) = a(iend,j)

ENDDO
ENDIF
IF (myranki /= 0) THEN

DO j = jsta, jend
works2(j) = a(ista,j)

ENDDO
ENDIF
CALL MPI_ISEND(a(ista,jend),ilen,MPI_REAL8,jnext,1,MPI_COMM_WORLD,isend1,ierr)
CALL MPI_ISEND(a(ista,jsta),ilen,MPI_REAL8,jprev,1,MPI_COMM_WORLD,isend2,ierr)
CALL MPI_ISEND(works1(jsta),jlen,MPI_REAL8,inext,1,MPI_COMM_WORLD,jsend1,ierr)
CALL MPI_ISEND(works2(jsta),jlen,MPI_REAL8,iprev,1,MPI_COMM_WORLD,jsend2,ierr)
CALL MPI_IRECV(a(ista,jsta-1),ilen,MPI_REAL8,jprev,1,MPI_COMM_WORLD,irecv1,ierr)
CALL MPI_IRECV(a(ista,jend+1),ilen,MPI_REAL8,jnext,1,MPI_COMM_WORLD,irecv2,ierr)
CALL MPI_IRECV(workr1(jsta) ,jlen,MPI_REAL8,iprev,1,MPI_COMM_WORLD,jrecv1,ierr)
CALL MPI_IRECV(workr2(jsta) ,jlen,MPI_REAL8,inext,1,MPI_COMM_WORLD,jrecv2,ierr)
CALL MPI_WAIT(isend1, istatus, ierr)
CALL MPI_WAIT(isend2, istatus, ierr)
CALL MPI_WAIT(jsend1, istatus, ierr)
CALL MPI_WAIT(jsend2, istatus, ierr)
CALL MPI_WAIT(irecv1, istatus, ierr)
CALL MPI_WAIT(irecv2, istatus, ierr)
CALL MPI_WAIT(jrecv1, istatus, ierr)
CALL MPI_WAIT(jrecv2, istatus, ierr)
IF (myranki /= 0) THEN

DO j = jsta, jend
a(ista-1,j) = workr1(j)

ENDDO
ENDIF
IF (myranki /= iprocs - 1) THEN
104 RS/6000 SP: Practical MPI Programming

DO j = jsta, jend
a(iend+1,j) = workr2(j)

ENDDO
ENDIF
DO j = jsta2, jend1

DO i = ista2, iend1
b(i,j) = a(i-1,j) + a(i,j-1) + a(i,j+1) + a(i+1,j)

ENDDO
ENDDO
CALL MPI_FINALIZE(ierr)
END

Note that in the vertical data transmissions, non-contiguous matrix elements are
first copied to buffers and then transmitted.

4.1.4 Block Distribution in Both Dimensions (2)
The following program has more complex dependence, that is, the value of b(i,j)
is calculated from eight neighbors including four diagonals.

PROGRAM main
IMPLICIT REAL*8 (a-h,o-z)
PARAMETER (m = 12, n = 9)
DIMENSION a(m,n), b(m,n)
DO j = 1, n

DO i = 1, m
a(i,j) = i + 10.0 * j

ENDDO
ENDDO
DO j = 2, n - 1

DO i = 2, m - 1
b(i,j) = a(i-1,j) + a(i, j-1) + a(i, j+1) + a(i+1,j)

& + a(i-1,j-1) + a(i+1,j-1) + a(i-1,j+1) + a(i+1,j+1)
ENDDO

ENDDO
END

The dependence is illustrated in Figure 92.

Figure 92. Dependence on Eight Neighbors

If the matrices are divided in both dimensions, a process needs data of
cater-cornered processes. You can add four sends and four receives in the
program given in 4.1.3, “Block Distribution in Both Dimensions (1)” on page 102,
but here the diagonal elements are copied in two steps without calling additional
communication subroutines. Figure 93 on page 106 shows how boundary
elements are gathered to process 4.
Advanced MPI Programming 105

Figure 93. Two-Dimensional FDM: Block Distribution in Both Dimensions (2)

In the parallelized program, horizontal data transmissions take place first and
then vertical transmissions follow.

PROGRAM main
INCLUDE ’mpif.h’
IMPLICIT REAL*8 (a-h,o-z)
PARAMETER (m = 12, n = 9)
DIMENSION a(m,n), b(m,n)
DIMENSION works1(n), workr1(n), works2(n), workr2(n)
INTEGER istatus(MPI_STATUS_SIZE)
PARAMETER (iprocs = 3, jprocs = 3)
INTEGER itable(-1:iprocs, -1:jprocs)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
IF (nprocs /= iprocs * jprocs) THEN
106 RS/6000 SP: Practical MPI Programming

PRINT *,’=== Error ===’
STOP

ENDIF
DO j = -1, jprocs

DO i = -1, iprocs
itable(i,j) = MPI_PROC_NULL

ENDDO
ENDDO
irank = 0
DO i = 0, iprocs - 1

DO j = 0, jprocs - 1
itable(i,j) = irank
IF (myrank == irank) THEN

myranki = i
myrankj = j

ENDIF
irank = irank + 1

ENDDO
ENDDO
CALL para_range(1, n, jprocs, myrankj, jsta, jend)
jsta2 = jsta
jend1 = jend
IF (myrankj == 0) jsta2 = 2
IF (myrankj == jprocs - 1) jend1 = n - 1
CALL para_range(1, m, iprocs, myranki, ista, iend)
ista2 = ista
iend1 = iend
IF (myranki == 0) ista2 = 2
IF (myranki == iprocs - 1) iend1 = m - 1
jjsta = MAX(1, ista - 1)
jjend = MIN(n, jend + 1)
ilen = iend - ista + 1
jlen = jjend - jjsta + 1
jnext = itable(myranki, myrankj + 1)
jprev = itable(myranki, myrankj - 1)
inext = itable(myranki + 1, myrankj)
iprev = itable(myranki - 1, myrankj)
DO j = jsta, jend

DO i = ista, iend
a(i,j) = i + 10.0 * j

ENDDO
ENDDO
CALL MPI_ISEND(a(ista,jend),ilen,MPI_REAL8,jnext,1,MPI_COMM_WORLD,isend1,ierr)
CALL MPI_ISEND(a(ista,jsta),ilen,MPI_REAL8,jprev,1,MPI_COMM_WORLD,isend2,ierr)
CALL MPI_IRECV(a(ista,jsta-1),ilen,MPI_REAL8,jprev,1,MPI_COMM_WORLD,irecv1,ierr)
CALL MPI_IRECV(a(ista,jend+1),ilen,MPI_REAL8,jnext,1,MPI_COMM_WORLD,irecv2,ierr)
CALL MPI_WAIT(isend1, istatus, ierr)
CALL MPI_WAIT(isend2, istatus, ierr)
CALL MPI_WAIT(irecv1, istatus, ierr)
CALL MPI_WAIT(irecv2, istatus, ierr)
IF (myranki /= iprocs - 1) THEN

DO j = jjsta, jjend
works1(j) = a(iend,j)

ENDDO
ENDIF
IF (myranki /= 0) THEN

DO j = jjsta, jjend
works2(j) = a(ista,j)

ENDDO
ENDIF
CALL MPI_ISEND(works1(jjsta),jlen,MPI_REAL8,inext,1,MPI_COMM_WORLD,jsend1,ierr)
CALL MPI_ISEND(works2(jjsta),jlen,MPI_REAL8,iprev,1,MPI_COMM_WORLD,jsend2,ierr)
CALL MPI_IRECV(workr1(jjsta),jlen,MPI_REAL8,iprev,1,MPI_COMM_WORLD,jrecv1,ierr)
CALL MPI_IRECV(workr2(jjsta),jlen,MPI_REAL8,inext,1,MPI_COMM_WORLD,jrecv2,ierr)
CALL MPI_WAIT(jsend1, istatus, ierr)
CALL MPI_WAIT(jsend2, istatus, ierr)
CALL MPI_WAIT(jrecv1, istatus, ierr)
CALL MPI_WAIT(jrecv2, istatus, ierr)
IF (myranki /= 0) THEN

DO j = jjsta, jjend
a(ista-1,j) = workr1(j)

ENDDO
ENDIF
IF (myranki /= iprocs - 1) THEN

DO j = jjsta, jjend
a(iend+1,j) = workr2(j)

ENDDO
ENDIF
Advanced MPI Programming 107

DO j = jsta2, jend1
DO i = ista2, iend1

b(i,j) = a(i-1,j) + a(i, j-1) + a(i, j+1) + a(i+1,j)
& + a(i-1,j-1) + a(i+1,j-1) + a(i-1,j+1) + a(i+1,j+1)

ENDDO
ENDDO
END

The three-dimensional FDM would be even more complex than the above
program, which is beyond the scope of this publication.

4.2 Finite Element Method

In the finite element method (FEM), the data dependence is much more irregular
than the finite difference method, so it is generally harder to parallelize. The
implicit method for FEM problems has a hot spot in solving linear equations with a
sparse symmetric matrix. In this section, the explicit method of FEM is considered
for parallelization.

The following is an example program that mimics data dependence of an FEM
solver using the explicit method.

1 ...
2 PARAMETER(iemax = 12, inmax = 21)
3 REAL*8 ve(iemax), vn(inmax)
4 INTEGER index(4,iemax)
5 ...
6 DO ie = 1, iemax
7 ve(ie) = ie * 10.0
8 ENDDO
9 DO in = 1, inmax

10 vn(in) = in * 100.0
11 ENDDO
12 DO itime = 1, 10
13 DO ie = 1, iemax
14 DO j = 1, 4
15 vn(index(j,ie)) = vn(index(j,ie)) + ve(ie)
16 ENDDO
17 ENDDO
18 DO in = 1, inmax
19 vn(in) = vn(in) * 0.25
20 ENDDO
21 DO ie = 1, iemax
22 DO j = 1, 4
23 ve(ie) = ve(ie) + vn(index(j,ie))
24 ENDDO
25 ENDDO
26 DO ie = 1, iemax
27 ve(ie) = ve(ie) * 0.25
28 ENDDO
29 ENDDO
30 PRINT *,’Result’,vn,ve
31 ...

The geometry of the model is illustrated in Figure 94 on page 109. There are 12
elements (represented by boxes) and each element has four nodes (circles)
adjacent to it. The method described in this section is applicable to more irregular
meshes as well. In the above program, ve() and vn() represent some quantity at
108 RS/6000 SP: Practical MPI Programming

elements and at nodes, respectively. Within the enclosing time step loop of itime,
there are four loops, which manipulate and update values at nodes and elements.
In lines 13-17, the value of ve() is added to vn() at adjacent nodes (Figure 94
(a)). Then the value of vn() is updated locally in lines 18-20 (Figure 94 (b)). This
value of vn() is used to update ve() in turn in lines 21-25 (Figure 94 (c)). At the
end of the time step, the value of ve() is updated locally in lines 26-28 (Figure 94
(d)).

Figure 94. Finite Element Method: Four Steps within a Time Step

To look up adjacent nodes for each element, a matrix index() is prepared. The
value of index(j,k) indicates the k-th neighbor node of element j, where k=1..4.

The strategy used to distribute data to processes is illustrated in Figure 95 on
page 110, where the number of processes is supposed to be three. Each process
is in charge of four elements and the nodes adjacent to them. As for a node that
lies on the boundary between two processes, pick up the process which has the

index

1 8 2 9 3 10 4 11 5 12 6 13

2 9 3 10 4 11 5 12 6 13 7 14

9 16 10 17 11 18 12 19 13 20 14 21

8 15 9 16 10 17 11 18 12 19 13 20

=

Advanced MPI Programming 109

lower rank and designate it as the primary process for that node. The other
process is treated as secondary for that node. In the figure, nodes for which a
process is secondary are marked with a dashed circle. For example, for node 3,
process 0 is primary and process 1 is secondary. Note that whether a process is
primary or secondary depends on the boundary node concerned. For instance,
process 1 is primary for node 12, but is secondary for node 10. In general, some
boundary nodes might have more than one secondary processes.

Figure 95. Assignment of Elements and Nodes to Processes

To work with boundary nodes, the following data structure is employed.

Process i has two-dimensional arrays ibwork1 and ibwork2. The j-th column of
ibwork1 is a list of boundary nodes between processes i and j, where process j is
primary. The number of such boundary nodes is given by ibcnt1(j). The j-th
column of ibwork2 is a list of boundary nodes between processes i and j, where
process i is primary. The number of such boundary nodes is given by ibcnt2(j).
By the definition of ibwork1 and ibwork2, the j-th column of process i’s ibwork1

(ibwork2) is identical with the i-th column of process j’s ibwork2 (ibwork1). The
values of ibwork1 and ibwork2 corresponding to the distribution in Figure 95 are
shown in Figure 96 on page 111.
110 RS/6000 SP: Practical MPI Programming

Figure 96. Data Structures for Boundary Nodes

In short, on a secondary process, ibwork1 is used to exchange boundary node
data with the primary process, and on the primary process, ibwork2 is used to
exchange boundary node data with secondary processes.

Figure 97. Data Structures for Data Distribution

Also, other data structures are prepared for storing information of data
distribution (see Figure 97). Since elements are block distributed, nodes are not
necessarily distributed to processes regularly. The array inwork() stores node
numbers that are maintained primarily by each process.

Here is a rough explanation of the parallelized program. After the initialization of
MPI, the data structure is prepared, and element array ve() and node array vn()

are also initialized. The array index() is assumed to be given.

1 ...
2 PARAMETER(iemax = 12, inmax = 21)
3 REAL*8 ve(iemax), vn(inmax)
4 INTEGER index(4,iemax)
5 INCLUDE ’mpif.h’
6 PARAMETER (ncpu = 3)
7 INTEGER nprocs, myrank
8 INTEGER istatus(MPI_STATUS_SIZE)
Advanced MPI Programming 111

9 INTEGER itemp(inmax,0:ncpu-1)
10 INTEGER incnt(0:ncpu-1), inwork(inmax,0:ncpu-1)
11 INTEGER ibcnt1(0:ncpu-1), ibwork1(inmax,0:ncpu-1)
12 INTEGER ibcnt2(0:ncpu-1), ibwork2(inmax,0:ncpu-1)
13 INTEGER iiesta(0:ncpu-1), iiecnt(0:ncpu-1)
14 INTEGER ireqs(0:ncpu-1), ireqr(0:ncpu-1)
15 DIMENSION bufs(inmax,0:ncpu-1), bufr(inmax,0:ncpu-1)
16 ...
17 CALL MPI_INIT(ierr)
18 CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
19 CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
20 DO irank = 0, nprocs - 1
21 DO i = 1, inmax
22 itemp(i,irank) = 0
23 ENDDO
24 ibcnt1(irank) = 0
25 ibcnt2(irank) = 0
26 incnt(irank) = 0
27 ENDDO
28 DO irank = 0, nprocs - 1
29 CALL para_range(1, iemax, nprocs, irank, iesta, ieend)
30 iiesta(irank) = iesta
31 iiecnt(irank) = ieend - iesta + 1
32 DO ie = iesta, ieend
33 DO j = 1, 4
34 itemp(index(j,ie),irank) = 1
35 ENDDO
36 ENDDO
37 ENDDO
38 CALL para_range(1, iemax, nprocs, myrank, iesta, ieend)
39 DO i = 1, inmax
40 iflg = 0
41 DO irank = 0, nprocs - 1
42 IF (itemp(i,irank) == 1) THEN
43 IF (iflg == 0) THEN
44 iflg = 1
45 iirank = irank
46 ELSE
47 itemp(i,irank) = 0
48 IF (irank == myrank) THEN
49 ibcnt1(iirank) = ibcnt1(iirank) + 1
50 ibwork1(ibcnt1(iirank),iirank) = i
51 ELSEIF (iirank == myrank) THEN
52 ibcnt2(irank) = ibcnt2(irank) + 1
53 ibwork2(ibcnt2(irank),irank) = i
54 ENDIF
55 ENDIF
56 ENDIF
57 ENDDO
58 ENDDO
59 DO irank = 0, nprocs - 1
60 DO i = 1, inmax
61 IF (itemp(i,irank) == 1) THEN
62 incnt(irank) = incnt(irank) + 1
63 inwork(incnt(irank),irank) = i
64 ENDIF
65 ENDDO
66 ENDDO
67 DO ie = iesta, ieend
68 ve(ie) = ie * 10.0
69 ENDDO
70 DO i = 1, incnt(myrank)
71 in = inwork(i,myrank)
72 vn(in) = in * 100.0
73 ENDDO

Now, the main time-ticking loop starts. First, node array vn() is updated using
element array ve() in Figure 98 on page 113. For a boundary node k, secondary
processes first clear the value of vn(k) to zero so that they calculate only the
difference contributed by the local elements and then send that difference to the
primary process (see Figure 99 on page 114).

74 DO itime = 1, 10
75 DO irank = 0, nprocs - 1
76 DO i = 1, ibcnt1(irank)
77 vn(ibwork1(i,irank)) = 0.0
112 RS/6000 SP: Practical MPI Programming

78 ENDDO
79 ENDDO
80 DO ie = iesta, ieend
81 DO j = 1, 4
82 vn(index(j,ie)) = vn(index(j,ie)) + ve(ie)
83 ENDDO
84 ENDDO
85 DO irank = 0, nprocs - 1
86 DO i = 1, ibcnt1(irank)
87 bufs(i,irank) = vn(ibwork1(i,irank))
88 ENDDO
89 ENDDO
90 DO irank = 0, nprocs - 1
91 IF (ibcnt1(irank) /= 0)
92 & CALL MPI_ISEND(bufs(1,irank),ibcnt1(irank),MPI_REAL8,irank,1,
93 & MPI_COMM_WORLD,ireqs(irank),ierr)
94 IF (ibcnt2(irank) /= 0)
95 & CALL MPI_IRECV(bufr(1,irank),ibcnt2(irank),MPI_REAL8,irank,1,
96 & MPI_COMM_WORLD,ireqr(irank),ierr)
97 ENDDO
98 DO irank = 0, nprocs - 1
99 IF (ibcnt1(irank) /= 0) CALL MPI_WAIT(ireqs(irank),istatus,ierr)

100 IF (ibcnt2(irank) /= 0) CALL MPI_WAIT(ireqr(irank),istatus,ierr)
101 ENDDO
102 DO irank = 0, nprocs - 1
103 DO i = 1, ibcnt2(irank)
104 vn(ibwork2(i,irank)) = vn(ibwork2(i,irank)) + bufr(i,irank)
105 ENDDO
106 ENDDO

Figure 98. Contribution of Elements to Nodes Are Computed Locally
Advanced MPI Programming 113

Figure 99. Secondary Processes Send Local Contribution to Primary Processes

Node array vn() is updated on primary processes and the new value is sent to
secondary processes (see Figure 100 on page 115).

107 DO i = 1, incnt(myrank)
108 in = inwork(i,myrank)
109 vn(in) = vn(in) * 0.25
110 ENDDO
111 DO irank = 0, nprocs - 1
112 DO i = 1, ibcnt2(irank)
113 bufs(i,irank) = vn(ibwork2(i,irank))
114 ENDDO
115 ENDDO
116 DO irank = 0, nprocs - 1
117 IF (ibcnt2(irank) /= 0)
118 & CALL MPI_ISEND(bufs(1,irank),ibcnt2(irank),MPI_REAL8,irank,1,
119 & MPI_COMM_WORLD,ireqs(irank),ierr)
120 IF (ibcnt1(irank) /= 0)
121 & CALL MPI_IRECV(bufr(1,irank),ibcnt1(irank),MPI_REAL8,irank,1,
122 & MPI_COMM_WORLD,ireqr(irank),ierr)
123 ENDDO
124 DO irank = 0, nprocs - 1
125 IF (ibcnt2(irank) /= 0) CALL MPI_WAIT(ireqs(irank),istatus,ierr)
126 IF (ibcnt1(irank) /= 0) CALL MPI_WAIT(ireqr(irank),istatus,ierr)
127 ENDDO
128 DO irank = 0, nprocs - 1
129 DO i = 1, ibcnt1(irank)
130 vn(ibwork1(i,irank)) = bufr(i,irank)
131 ENDDO
132 ENDDO
114 RS/6000 SP: Practical MPI Programming

Figure 100. Updated Node Values Are Sent from Primary to Secondary

Element array ve() is updated (see Figure 101 on page 115) using node array
vn().

133 DO ie = iesta, ieend
134 DO j=1,4
135 ve(ie) = ve(ie) + vn(index(j,ie))
136 ENDDO
137 ENDDO
138 DO ie = iesta, ieend
139 ve(ie) = ve(ie) * 0.25
140 ENDDO
141 ENDDO

Figure 101. Contribution of Nodes to Elements Are Computed Locally

Finally, after the last time step, arrays ve() and vn() are collected at process 0.

142 DO i = 1, incnt(myrank)
143 bufs(i,myrank) = vn(inwork(i,myrank))
144 ENDDO
145 IF (myrank == 0) THEN
Advanced MPI Programming 115

146 DO irank = 1, nprocs - 1
147 CALL MPI_IRECV(bufr(1,irank),incnt(irank),MPI_REAL8,irank,1,
148 & MPI_COMM_WORLD,ireqs(irank),ierr)
149 ENDDO
150 DO irank = 1, nprocs - 1
151 CALL MPI_WAIT(ireqs(irank),istatus,ierr)
152 ENDDO
153 ELSE
154 CALL MPI_ISEND(bufs(1,myrank),incnt(myrank),MPI_REAL8,0,1,
155 & MPI_COMM_WORLD,ireqr,ierr)
156 CALL MPI_WAIT(ireqr,istatus,ierr)
157 ENDIF
158 IF (myrank == 0) THEN
159 DO irank = 1, nprocs - 1
160 DO i = 1, incnt(irank)
161 vn(inwork(i,irank)) = bufr(i,irank)
162 ENDDO
163 ENDDO
164 ENDIF
165 IF (myrank == 0) THEN
166 DO irank = 1, nprocs - 1
167 CALL MPI_IRECV(ve(iiesta(irank)),iiecnt(irank),MPI_REAL8,irank,1,
168 & MPI_COMM_WORLD,ireqs(irank),ierr)
169 ENDDO
170 DO irank = 1, nprocs - 1
171 CALL MPI_WAIT(ireqs(irank),istatus,ierr)
172 ENDDO
173 ELSE
174 CALL MPI_ISEND(ve(iesta),ieend-iesta+1,MPI_REAL8,0,1,
175 & MPI_COMM_WORLD,ireqr,ierr)
176 CALL MPI_WAIT(ireqr,istatus,ierr)
177 ENDIF
178 CALL MPI_FINALIZE(ierr)
179 PRINT *,’Result’,vn,ve
180 ...

Note that the problem solved in this section is rather special in that the numbering
of elements are such that when elements are block-distributed to processes, it
makes a moderately small number of boundary nodes between processes. In
addition, on irregular meshes, the number of assigned nodes might not be well
balanced among processes, if you divide data evenly in terms of number of
elements.

4.3 LU Factorization

The LU factorization is a popular method for solving linear equations with dense
matrices. Parallel ESSL for AIX has subroutines for LU factorization which
outperform hand-coded solutions in most cases. (See Chapter 4.8, “Using
Parallel ESSL” on page 139 for details.) So, regard this section as an example of
one of the methodologies of parallelization. The following program solves a
system of linear equations: Ax=b. It first factorizes the matrix A into a product of a
lower triangular matrix (L) and a upper triangular matrix (U). Matrices L and U
overwrite the original matrix. Then in the forward elimination and in the backward
substitution, the solution vector x overwrites b. Pivoting and loop-unrolling are not
considered in order to maintain simplicity.

PROGRAM main
PARAMETER (n = ...)
REAL a(n,n)
...

! LU factorization
DO k = 1, n-1

DO i = k+1, n
a(i,k) = a(i,k) / a(k,k)

ENDDO
116 RS/6000 SP: Practical MPI Programming

DO j = k+1, n
DO i = k+1, n

a(i,j) = a(i,j) - a(i,k) * a(k,j)
ENDDO

ENDDO
ENDDO

! Forward elimination
DO i = 2, n

DO j = 1, i - 1
b(i) = b(i) - a(i,j) * b(j)

ENDDO
ENDDO

! Backward substitution
DO i = n, 1, -1

DO j = i + 1, n
b(i) = b(i) - a(i, j) * b(j)

ENDDO
b(i) = b(i) / a(i,i)

ENDDO
END
...

As the execution proceeds, the part of the matrix which is processed in the LU
factorization shrinks as follows: where k increases from 1 to
n-1.

Figure 102. Data Distributions in LU Factorization

Because of this access pattern of LU factorization, when the matrix is
block-distributed, the workload will not be balanced among processes in the later
iterations of k, as Figure 102 (a) shows. On the other hand, cyclic distribution
provides a good load balance (see Figure 102 (b)).

a i j,() k 1+ i j n≤,≤{ }
Advanced MPI Programming 117

Figure 103. First Three Steps of LU Factorization

Figure 103 illustrates the first three steps (k=1,2,3) of LU factorization. In the
serial execution, matrix elements marked with black circles are used to update
elements marked with black boxes. In the parallel execution, since the matrix is
distributed cyclic, the process that holds black circles varies from iteration to
iteration. In each iteration, black circles are broadcasted from the process that
has them to the other processes, and all the processes start updating their own
part. In the parallelized program, cyclic distribution is implemented by use of a
mapping array (See Chapter 3.4.2, “Cyclic Distribution” on page 56). In iteration
k, the pivot is owned by process map(k).

PROGRAM main
INCLUDE ’mpif.h’
PARAMETER (n = ...)
REAL a(n,n)
INTEGER map(n)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
DO i = 1, n+1

map(i) = MOD(i-1, nprocs)
ENDDO
...

! LU factorization
118 RS/6000 SP: Practical MPI Programming

DO k = 1, n
IF (map(k) == myrank) THEN

DO i = k+1, n
a(i,k) = a(i,k) / a(k,k)

ENDDO
ENDIF
CALL MPI_BCAST(a(k,k), n-k+1, MPI_REAL, map(k),

& MPI_COMM_WORLD, ierr)
DO j = k+1, n

IF (map(j) == myrank) THEN
DO i = k+1, n

a(i,j) = a(i,j) - a(i,k) * a(k,j)
ENDDO

ENDIF
ENDDO

ENDDO
! Forward elimination

DO i = 2, n
s = 0.0
DO j = 1 + myrank, i - 1, nprocs

s = s + a(i,j) * b(j)
ENDDO
CALL MPI_ALLREDUCE(s, ss, 1, MPI_REAL, MPI_SUM,

& MPI_COMM_WORLD, ierr)
b(i) = b(i) - ss

ENDDO
! Backward substitution

DO i = n, 1, -1
s = 0.0
IF (map(i+1) <= myrank) THEN

ii = i + 1 + myrank - map(i+1)
ELSE

ii = i + 1 + myrank - map(i+1) + nprocs
ENDIF
DO j = ii, n, nprocs

s = s + a(i, j) * b(j)
ENDDO
CALL MPI_ALLREDUCE(s, ss, 1, MPI_REAL, MPI_SUM,

& MPI_COMM_WORLD, ierr)
b(i) = (b(i) - ss) / a(i,i)

ENDDO
END
...

Since map(n+1) is referenced in the backward substitution, the range of map() has
to be 1..n+1. The backward substitution also needs a(i,i), so the range of the
loop variable k in the LU factorization is modified without affecting the outcome of
the LU factorization, and the diagonal elements are broadcast at the time of LU
factorization.

If you incrementally parallelize the program (see “Incremental parallelization” on
page 92), you can add the following code to synchronize the value of matrix a()

among processes between factorization and forward elimination or between
forward elimination and backward substitution in the process of parallelization.

DO j = 1, n
IF (map(j) == myrank) THEN

DO i = 1, n
Advanced MPI Programming 119

tmp(i,j) = a(i,j)
ENDDO

ELSE
DO i = 1, n

tmp(i,j) = 0.0
ENDDO

ENDIF
ENDDO
CALL MPI_ALLREDUCE(tmp, a, n*n, MPI_REAL, MPI_SUM,

& MPI_COMM_WORLD, ierr)

This code uses the technique of superposition (Chapter 3.5.5, “Superposition” on
page 78).

4.4 SOR Method

The following program solves a two-dimensional Laplace equation using the
successive over-relaxation (SOR) method. The outermost loop is for the
convergence of x(), and the inner loops regarding i and j are for updating the
value of x(). The convergence is accelerated with the over-relaxation parameter
omega.

PROGRAM sor
PARAMETER (mmax = 6, nmax = 9)
PARAMETER (m = mmax - 1, n = nmax - 1)
REAL x(0:mmax, 0:nmax)
...
DO k = 1, 300

err1 = 0.0
DO j = 1, n

DO i = 1, m
temp = 0.25 * (x(i,j-1) + x(i-1,j)

& + x(i+1,j) + x(i,j+1)) - x(i,j)
x(i,j) = x(i,j) + omega * temp
IF (abs(temp) > err1) err1 = abs(temp)

ENDDO
ENDDO
IF (err1 <= eps) exit

ENDDO
...
END

Figure 104. SOR Method: Serial Run
120 RS/6000 SP: Practical MPI Programming

Figure 104 on page 120 shows data dependence of the SOR program. In
updating x(i,j), its four neighbors are referenced. However, due to the loop
structure, when x(i,j) is updated, x(i,j-1) and x(i-1,j) are already updated in
that iteration, whereas x(i+1,j) and x(i,j+1) are not. Therefore, there is a strict
restriction in the order of update, which is shown in dashed arrows in the figure.

You could use the pipeline method (Chapter 3.5.6, “The Pipeline Method” on
page 79) to parallelize this program, but, usually, an alternative method called
red-black SOR is used.

4.4.1 Red-Black SOR Method
In the red-black SOR, the order of computation is modified from the original SOR
method, which means the steps required for convergence may change and the
result may be different within the precision that is imposed by the variable eps.
First, each matrix element is conceptually colored with red or black as follows.

If i+j is even, x(i,j) is red. (Shown as circles in Figure 105)

If i+j is odd, x(i,j) is black. (Shown as boxes in Figure 105)

The red-black SOR updates red elements and black elements alternately. Note
that the four neighbors of a red element are all black, and vice versa. So, red
(black) elements can be updated independently of other red (black) elements,
and, thereby, the red-black SOR can be efficiently parallelized.

Figure 105. Red-Black SOR Method
Advanced MPI Programming 121

The program of the red-black SOR method is as follows.

PROGRAM red_black
PARAMETER (mmax = 6, nmax = 9)
PARAMETER (m = mmax - 1, n = nmax - 1)
REAL x(0:mmax, 0:nmax)
...
DO k = 1, 300

err1 = 0.0
DO j = 1, n

DO i = MOD(j+1,2) + 1, m, 2
temp = 0.25 * (x(i,j-1) + x(i-1,j)

& + x(i+1,j) + x(i,j+1)) - x(i,j)
x(i,j) = x(i,j) + omega * temp
IF (abs(temp) > err1) err1 = abs(temp)

ENDDO
ENDDO
DO j = 1, n

DO i = MOD(j,2) + 1, m, 2
temp = 0.25 * (x(i,j-1) + x(i-1,j)

& + x(i+1,j) + x(i,j+1)) - x(i,j)
x(i,j) = x(i,j) + omega * temp
IF (abs(temp) > err1) err1 = abs(temp)

ENDDO
ENDDO
IF (err1 <= eps) exit

ENDDO
...
END

Figure 106 on page 123 illustrates how the red-black SOR works with three
processes. Matrix x() is block-distributed by columns. First, each process packs
black (shown as boxes in the figure) boundary elements to buffers, sends them to
adjacent processes, and red elements (circles) are updated using black elements
(boxes). Next, each process sends updated red boundary elements to adjacent
processes, and black elements are updated using red elements. These steps
repeat until the matrix converges.

For convenience, a module is used in the parallel program.

MODULE para
INCLUDE ’mpif.h’
PARAMETER (mmax = 6, nmax = 9)
PARAMETER (m = mmax - 1, n = nmax - 1)
REAL x(0:mmax, 0:nmax)
REAL bufs1(mmax), bufr1(mmax)
REAL bufs2(mmax), bufr2(mmax)
INTEGER istatus(MPI_STATUS_SIZE)
INTEGER nprocs, myrank, jsta, jend, inext, iprev
END

Arrays bufs1() and bufr1() are the send and receive buffers for the left neighbor
process (rank=iprev), and arrays bufs2() and bufr2() are for the right neighbor
process (rank=inext).
122 RS/6000 SP: Practical MPI Programming

Figure 106. Red-Black SOR Method: Parallel Run

The following is the main program.

PROGRAM main
USE para
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
CALL para_range(1, n, nprocs, myrank, jsta, jend)
Advanced MPI Programming 123

inext = myrank + 1
iprev = myrank - 1
IF (inext == nprocs) inext = MPI_PROC_NULL
IF (iprev == -1) iprev = MPI_PROC_NULL
...
DO k = 1, 300

err1 = 0.0
CALL shift(0)
DO j = jsta, jend

DO i = MOD(j+1,2) + 1, m, 2
temp = 0.25 * (x(i,j-1) + x(i-1,j)

& + x(i+1,j) + x(i,j+1)) - x(i,j)
x(i,j) = x(i,j) + omega * temp
IF (abs(temp) > err1) err1 = abs(temp)

ENDDO
ENDDO
CALL shift(1)
DO j = jsta, jend

DO i = MOD(j,2) + 1, m, 2
temp = 0.25 * (x(i,j-1) + x(i-1,j)

& + x(i+1,j) + x(i,j+1)) - x(i,j)
x(i,j) = x(i,j) + omega * temp
IF (abs(temp) > err1) err1 = abs(temp)

ENDDO
ENDDO
CALL MPI_ALLREDUCE(err1, err2, 1, MPI_REAL, MPI_MAX,

& MPI_COMM_WORLD, ierr)
err1 = err2
IF (err1 <= eps) exit

ENDDO
...
CALL MPI_FINALIZE(ierr)
END

Subroutine shift(iflg) takes care of all the data transmissions: iflg=0 is for black
elements (boxes) and iflg=1 is for red elements (circles).

SUBROUTINE shift(iflg)
USE para
is1 = MOD(jsta + iflg, 2) + 1
is2 = MOD(jend + iflg, 2) + 1
ir1 = 3 - is1
ir2 = 3 - is2
IF (myrank /= 0) THEN

icnt1 = 0
DO i = is1, m, 2

icnt1 = icnt1 + 1
bufs1(icnt1) = x(i,jsta)

ENDDO
ENDIF
IF (myrank /= nprocs - 1) THEN

icnt2 = 0
DO i = is2, m, 2

icnt2 = icnt2 + 1
bufs2(icnt2) = x(i,jend)

ENDDO
ENDIF
CALL MPI_ISEND(bufs1,icnt1,MPI_REAL,iprev,1,MPI_COMM_WORLD,ireqs1,ierr)
CALL MPI_ISEND(bufs2,icnt2,MPI_REAL,inext,1,MPI_COMM_WORLD,ireqs2,ierr)
CALL MPI_IRECV(bufr1,mmax, MPI_REAL,iprev,1,MPI_COMM_WORLD,ireqr1,ierr)
CALL MPI_IRECV(bufr2,mmax, MPI_REAL,inext,1,MPI_COMM_WORLD,ireqr2,ierr)
CALL MPI_WAIT(ireqs1, istatus, ierr)
CALL MPI_WAIT(ireqs2, istatus, ierr)
CALL MPI_WAIT(ireqr1, istatus, ierr)
CALL MPI_WAIT(ireqr2, istatus, ierr)
IF (myrank /= 0) THEN

icnt = 0
DO i = ir1, m, 2

icnt = icnt + 1
x(i,jsta-1) = bufr1(icnt)

ENDDO
ENDIF
IF (myrank /= nprocs - 1) THEN

icnt = 0
DO i = ir2, m, 2

icnt = icnt + 1
x(i,jend+1) = bufr2(icnt)
124 RS/6000 SP: Practical MPI Programming

ENDDO
ENDIF
END

4.4.2 Zebra SOR Method
If you don’t plan to distribute the matrix in both dimensions, besides red-black
SOR, consider the option of coloring columns alternately using two colors, for
example, black and white. First, update all the white elements, and then update
the black elements, which is called zebra SOR method in this publication.

Figure 107. Zebra SOR Method

Figure 107 shows how the computation proceeds in the zebra SOR method. The
following is the serial program of zebra SOR.

PROGRAM zebra
PARAMETER (mmax = ..., nmax = ...)
PARAMETER (m = mmax - 1, n = nmax - 1)
DIMENSION x(0:mmax, 0:nmax)
...
DO k = 1, 300

err1 = 0.0
DO j = 1, n, 2

DO i = 1, m
Update x(i,j) and err1

ENDDO
Advanced MPI Programming 125

ENDDO
DO j = 2, n, 2

DO i = 1, m
Update x(i,j) and err1

ENDDO
ENDDO
IF (err1 <= eps) EXIT

ENDDO
...
END

When updating elements in a column, you have to maintain the order of the
elements. That is, you have to update elements from top to bottom in the figure.
In other words, there is a flow dependence within a column. Remember that in
red-black SOR, elements of the same color can be updated in any order. In that
sense, the minimum block for parallelization is a matrix element in red-black
SOR. In zebra SOR, the minimum block for parallelization is a column of
elements: as long as the order of update within a column is kept unchanged, you
can update the columns in any order. This property enables parallelization.

Figure 108. Zebra SOR Method: Parallel Run

The Figure 108 shows how the matrix elements are updated in the parallelized
zebra SOR method. The matrix elements are assigned to processes in
column-wise block distribution. To make the data transmission uniform among
126 RS/6000 SP: Practical MPI Programming

processes, distribute columns so that the same pattern appears on the boundary
between processes. Stated in another way, jend-jsta+1 should be even in all
the processes, except possibly for the last process.

PROGRAM zebrap
INCLUDE ’mpif.h’
PARAMETER (mmax = ..., nmax = ...)
PARAMETER (m = mmax - 1, n = nmax - 1)
DIMENSION x(0:mmax, 0:nmax)
INTEGER istatus(MPI_STATUS_SIZE)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
CALL para_range(1, (n + 1)/2, nprocs, myrank, jsta, jend)
jsta = jsta * 2 - 1
jend = MIN(n, jend * 2)
inext = myrank + 1
iprev = myrank - 1
IF (inext == nprocs) inext = MPI_PROC_NULL
IF (iprev == -1) iprev = MPI_PROC_NULL
...
DO k = 1, 300

err1 = 0.0
CALL MPI_ISEND(x(1,jend), m, MPI_REAL,

& inext, 1, MPI_COMM_WORLD, ireqs, ierr)
CALL MPI_IRECV(x(1,jsta-1), m, MPI_REAL,

& iprev, 1, MPI_COMM_WORLD, ireqr, ierr)
CALL MPI_WAIT(ireqs, istatus, ierr)
CALL MPI_WAIT(ireqr, istatus, ierr)
DO j = jsta, jend, 2

DO i = 1, m
Update x(i,j) and err1

ENDDO
ENDDO
CALL MPI_ISEND(x(1,jsta), m, MPI_REAL,

& iprev, 1, MPI_COMM_WORLD, ireqs, ierr)
CALL MPI_IRECV(x(1,jend+1), m, MPI_REAL,

& inext, 1, MPI_COMM_WORLD, ireqr, ierr)
CALL MPI_WAIT(ireqs, istatus, ierr)
CALL MPI_WAIT(ireqr, istatus, ierr)
DO j = jsta + 1, jend, 2

DO i = 1, m
Update x(i,j) and err1

ENDDO
ENDDO
CALL MPI_ALLREDUCE(err1, err2, 1, MPI_REAL,

& MPI_MAX, MPI_COMM_WORLD, ierr)
IF (err2 <= eps) EXIT

ENDDO
...
CALL MPI_FINALIZE(ierr)
END

Note that the data transmission is simple compared with red-black SOR. Since
red-black SOR and zebra SOR use different orders in updating matrix elements,
the number of time steps needed for convergence may be different. Choose the
best algorithm in terms of the running time: there can be other variations of
coloring, or ordering, of elements.

The zebra SOR can be regarded as having the same dependence of
one-dimensional red-black SOR. The red-black coloring in a lower dimension can
be applied to higher dimensions at the cost of the restriction as to how the arrays
may be distributed. In the zebra SOR method presented in this section, it is not
allowed to divide the matrix in row-wise distribution.

In solving three-dimensional SOR, there also can be various ways of coloring
elements. Suppose that a matrix element is updated using its six
neighbors, , , and and that you use two colors.
The following shows three examples of coloring.

x i j k, ,()
x i 1± j k, ,() x i j 1± k, ,() x i j k 1±, ,()
Advanced MPI Programming 127

If i+j+k=1 (mod 2), color x(i,j,k) red; otherwise color it black

If j+k=1 (mod 2), color x(i,j,k) red; otherwise color it black

If k=1 (mod 2), color x(i,j,k) red; otherwise color it black

Again, you should decide how to color elements based on the performance of the
parallel program and sometimes the amount of work for parallelization.

4.4.3 Four-Color SOR Method
In the following program, eight neighbors are involved in updating the value of
x(i,j). Red-black SOR does not work for this case.

PROGRAM main
PARAMETER (mmax = ..., nmax = ...)
PARAMETER (m = mmax - 1, n = nmax - 1)
DIMENSION x(0:mmax, 0:nmax)
...
DO k = 1, 300

err1 = 0.0
DO j = 1, n

DO i = 1, m
temp = 0.125 * (x(i, j-1) + x(i-1,j)

& + x(i+1,j) + x(i, j+1)
& + x(i-1,j-1) + x(i+1,j-1)
& + x(i-1,j+1) + x(i+1,j+1))
& - x(i,j)

x(i,j) = x(i,j) + omega * temp
IF (abs(temp) > err1) err1 = abs(temp)

ENDDO
ENDDO

IF (err1 <= eps) EXIT
ENDDO
...
END

You can parallelize the above program using zebra SOR method, but another
method, four-color SOR, is presented in this section.

Four-color SOR is a generalization of red-black SOR, which colors x(i,j) with
one of the four colors depending on whether i is even/odd and j is even/odd, and
updates x(i,j) one color at a time. In the following program, “Update x(i,j)

and err1” represents the italic statements in the original program.

PROGRAM fourcolor
PARAMETER (mmax = ..., nmax = ...)
PARAMETER (m = mmax - 1, n = nmax - 1)
DIMENSION x(0:mmax, 0:nmax)
...
DO k = 1, 300

err1 = 0.0
DO j = 1, n, 2

DO i = 1, m, 2
Update x(i,j) and err1

ENDDO
ENDDO
DO j = 1, n, 2

DO i = 2, m, 2
128 RS/6000 SP: Practical MPI Programming

Update x(i,j) and err1
ENDDO

ENDDO
DO j = 2, n, 2

DO i = 1, m, 2
Update x(i,j) and err1

ENDDO
ENDDO
DO j = 2, n, 2

DO i = 2, m, 2
Update x(i,j) and err1

ENDDO
ENDDO
IF (err1 <= eps) EXIT

ENDDO
...
END

Figure 109 shows one iteration of the four-color SOR method.

Figure 109. Four-Color SOR Method

Suppose you parallelize the four-color SOR program using column-wise block
distribution. For the ease of programming, the number of columns (excluding the
fixed boundary elements) assigned to processes should be an even integer
Advanced MPI Programming 129

except for process nprocs-1. The behavior of the parallelized program is shown in
Figure 110 on page 130.

Figure 110. Four-Color SOR Method: Parallel Run

The difference from the red-black SOR method is that data transmissions take
place in one direction at a time and that the whole column is transmitted instead
of every other element packed into a working array. The following is the
parallelized code.

PROGRAM fourcolorp
130 RS/6000 SP: Practical MPI Programming

INCLUDE ’mpif.h’
PARAMETER (mmax = ..., nmax = ...)
PARAMETER (m = mmax - 1, n = nmax - 1)
DIMENSION x(0:mmax, 0:nmax)
INTEGER istatus(MPI_STATUS_SIZE)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
CALL para_range(1, (n + 1)/2, nprocs, myrank, jsta, jend)
jsta = jsta * 2 - 1
jend = MIN(n, jend * 2)
inext = myrank + 1
iprev = myrank - 1
IF (inext == nprocs) inext = MPI_PROC_NULL
IF (iprev == -1) iprev = MPI_PROC_NULL
...
DO k = 1, 300

err1 = 0.0
CALL MPI_ISEND(x(1,jend), m, MPI_REAL,

& inext, 1, MPI_COMM_WORLD, ireqs, ierr)
CALL MPI_IRECV(x(1,jsta-1), m, MPI_REAL,

& iprev, 1, MPI_COMM_WORLD, ireqr, ierr)
CALL MPI_WAIT(ireqs, istatus, ierr)
CALL MPI_WAIT(ireqr, istatus, ierr)
DO j = jsta, jend, 2

DO i = 1, m, 2
Update x(i,j) and err1

ENDDO
ENDDO
DO j = jsta, jend, 2

DO i = 2, m, 2
Update x(i,j) and err1

ENDDO
ENDDO
CALL MPI_ISEND(x(1,jsta), m, MPI_REAL,

& iprev, 1, MPI_COMM_WORLD, ireqs, ierr)
CALL MPI_IRECV(x(1,jend+1), m, MPI_REAL,

& inext, 1, MPI_COMM_WORLD, ireqr, ierr)
CALL MPI_WAIT(ireqs, istatus, ierr)
CALL MPI_WAIT(ireqr, istatus, ierr)
DO j = jsta + 1, jend, 2

DO i = 1, m, 2
Update x(i,j) and err1

ENDDO
ENDDO
DO j = jsta + 1, jend, 2

DO i = 2, m, 2
Update x(i,j) and err1

ENDDO
ENDDO
CALL MPI_ALLREDUCE(err1, err2, 1, MPI_REAL,

& MPI_MAX, MPI_COMM_WORLD, ierr)
IF (err2 <= eps) EXIT

ENDDO
...
CALL MPI_FINALIZE(ierr)
END

In spite of the more complex dependence compared to the original program, the
parallelized four-color SOR is simpler than the parallelized red-black SOR.

4.5 Monte Carlo Method

As an example of the Monte Carlo method, a random walk in two-dimensions is
considered. Issues about random number generation is the subject of this
section. The following program simulates a random walk of 100,000 particles in
10 steps, and outputs the distribution of the distances that particles have
traveled.

PROGRAM main
PARAMETER (n = 100000)
INTEGER itotal(0:9)
Advanced MPI Programming 131

REAL seed
pi = 3.1415926
DO i = 0, 9

itotal(i) = 0
ENDDO
seed = 0.5
CALL srand(seed)
DO i = 1, n

x = 0.0
y = 0.0
DO istep = 1, 10

angle = 2.0 * pi * rand()
x = x + cos(angle)
y = y + sin(angle)

ENDDO
itemp = sqrt(x**2 + y**2)
itotal(itemp) = itotal(itemp) + 1

ENDDO
PRINT *,’total =’,itotal
END

A sample trajectory of a particle is illustrated in Figure 111.

Figure 111. Random Walk in Two-Dimension

By distributing particles to processes, the program is easily parallelized. Make
sure that processes use different seeds for random numbers.

PROGRAM main
INCLUDE ’mpif.h’
132 RS/6000 SP: Practical MPI Programming

PARAMETER (n = 100000)
INTEGER itotal(0:9), iitotal(0:9)
REAL seed
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
CALL para_range(1, n, nprocs, myrank, ista, iend)
pi = 3.1415926
DO i = 0, 9

itotal(i) = 0
ENDDO
seed = 0.5 + myrank
CALL srand(seed)
DO i = ista, iend

x = 0.0
y = 0.0
DO istep = 1, 10

angle = 2.0 * pi * rand()
x = x + cos(angle)
y = y + sin(angle)

ENDDO
itemp = sqrt(x**2 + y**2)
itotal(itemp) = itotal(itemp) + 1

ENDDO
CALL MPI_REDUCE(itotal, iitotal, 10, MPI_INTEGER, MPI_SUM, 0,

& MPI_COMM_WORLD, ierr)
PRINT *,’total =’,iitotal
CALL MPI_FINALIZE(ierr)
END

Since the time spent for communication is much smaller than that of computation
in the above program, it has ideal parallel speed-up. But, you have to keep in
mind that the sequence of random numbers used in parallel execution is different
from the one used in serial execution. Therefore, the result may be different. You
might be able to use Parallel ESSL subroutine PDURNG to generate uniformly
distributed random numbers for multiple processes, but if processes use different
numbers of random numbers, subroutine PDURNG may not be applicable in
terms of uniformity. This case happens when the underlying model allows the
particles to be annihilated on the fly, for instance. One more tip for random
numbers: You will get better performance if you generate a series of random
numbers at one time rather than generate them one by one. There are several
ESSL subroutines for this purpose.

SURAND, DURAND Generate a vector of short-period uniformly distributed
random numbers

SURXOR, DURXOR Generate a vector of long-period uniformly distributed
random numbers

SNRAND, DNRAND Generate a vector of normally distributed random
numbers

An S prefix is for single-precision and a D prefix is for double-precision.
Advanced MPI Programming 133

4.6 Molecular Dynamics

In the program of molecular dynamics or the distinct element method, it is not
unusual that among several loops within the outer-most time ticking loop, only a
fraction of the loops account for most of the CPU time. The method described in
“Pattern 1. Partial Parallelization of a DO Loop” on page 46 would be suitable for
parallelizing these kind of programs.

Figure 112. Interaction of Two Molecules

The following example model simulates interacting n particles in one dimension.
The force on particle i from particle j is given by where is the
coordinate of particle i. The law of action and reaction applies: .
Therefore, the total force acting on particle i is expressed as follows.

The above formula is illustrated in Figure 113 for the seven particles.

Figure 113. Forces That Act on Particles

The serial program calculates forces for particles and updates their coordinates in
each time step. Using the antisymmetry, is only calculated for .

...
PARAMETER (n = ...)
REAL f(n), x(n)
...
DO itime = 1, 100

DO i = 1, n
f(i) = 0.0

ENDDO
DO i = 1, n-1

DO j = i+1, n
fij = 1.0 / (x(j)-x(i))
f(i) = f(i) + fij
f(j) = f(j) - fij

ENDDO

fij 1 xj xi–()⁄= xi
fij f– j i=

fi fij
j i≠
∑ fj i

j i<
∑– fi j

j i>
∑+= =

fij i j<
134 RS/6000 SP: Practical MPI Programming

ENDDO
DO i = 1, n

x(i) = x(i) + f(i)
ENDDO

ENDDO
...

Note that within the time ticking loop, the second loop is the hot spot, which
calculates the force. The second loop is a doubly-nested loop, which is not
suitable for block distribution because the range of iteration variables (i,j) is
limited to the “upper triangle” in Figure 113 on page 134. Two options of
parallelizing the second loop are shown below: cyclic distribution regarding i and
cyclic distribution regarding j. Which option performs better depends on various
factors such as workload balance and cache misses, so it cannot be concluded
here which is better. The following program parallelizes the second loop with
respect to the outer loop by cyclic distribution.

...
PARAMETER (n = ...)
REAL f(n), x(n), ff(n)
...
DO itime = 1, 100

DO i = 1, n
f(i) = 0.0

ENDDO
DO i = 1 + myrank, n-1, nprocs

DO j = i+1, n
fij = 1.0 / (x(j)-x(i))
f(i) = f(i) + fij
f(j) = f(j) - fij

ENDDO
ENDDO
CALL MPI_ALLREDUCE(f, ff, n, MPI_REAL, MPI_SUM,

& MPI_COMM_WORLD, ierr)
DO i = 1, n

x(i) = x(i) + ff(i)
ENDDO

ENDDO
...
Advanced MPI Programming 135

Figure 114 illustrates three-process execution for seven particles.

Figure 114. Cyclic Distribution in the Outer Loop

The following program parallelizes the second loop regarding the inner loop by
cyclic distribution.

...
PARAMETER (n = ...)
REAL f(n), x(n), ff(n)
...
DO itime = 1, 100

DO i = 1, n
f(i) = 0.0

ENDDO
irank = -1
DO i = 1, n-1

DO j = i+1, n
irank = irank + 1
IF (irank == nprocs) irank = 0
IF (myrank == irank) THEN

fij = 1.0 / (x(j)-x(i))
f(i) = f(i) + fij
f(j) = f(j) - fij

ENDIF
136 RS/6000 SP: Practical MPI Programming

ENDDO
ENDDO
CALL MPI_ALLREDUCE(f, ff, n, MPI_REAL, MPI_SUM,

& MPI_COMM_WORLD, ierr)
DO i = 1, n

x(i) = x(i) + ff(i)
ENDDO

ENDDO
...

Figure 115 illustrates three-process execution for seven particles.

Figure 115. Cyclic Distribution of the Inner Loop

In the parallelized programs, one call of MPI_ALLREDUCE for n variables () per
n(n-1)/2 computations of would not affect the performance seriously.

4.7 MPMD Models

This section describes how to write and run programs in the MPMD (Multiple
Programs Multiple Data) model. Unlike the SPMD (Single Program Multiple Data)
model, different programs run in parallel and communicate with each other in the
MPMD model. In Parallel Environment for AIX, set the value of environment

fi
fij
Advanced MPI Programming 137

variable MPI_PGMMODEL as “spmd” (default) or “mpmd” in order to select which
model to use. Suppose you want to run a program for a coupled analysis, which
consists of fluid dynamics and structural analysis. Prepare two programs, fluid.f
and struct.f, and do as follows.

$ mpxlf fluid.f -o fluid
$ mpxlf struct.f -o struct
(Copy the executables to remote nodes if necessary)
$ export MP_PGMMODEL=mpmd
$ export MP_CMDFILE=cmdfile
$ poe -procs 2

Environment variables which are irrelevant to MPMD execution are not shown.
The contents of a sample cmdfile (file name is arbitrary) is shown below.

fluid
struct

In the command file, the executables are specified in the order of ranks. With this
file, process 0 executes the fluid program and process 1 executes struct

program. As described in Chapter 2.6, “Managing Groups” on page 36, you may
have to create groups for fluid dynamics processes and structural analysis
processes so that processes can call collective communication subroutines within
each group. Figure 116 illustrates MPMD execution of fluid and struct.

Figure 116. MPMD Model

The remainder of this section focuses on master/worker MPMD programs, where
one process, the master, coordinates the execution of all the others, the workers.
Consider the following program.

PROGRAM main
PARAMETER (njobmax = 100)
DO njob = 1, njobmax

CALL work(njob)
ENDDO
...
END
138 RS/6000 SP: Practical MPI Programming

There are 100 jobs to do and subroutine work does some computation according
to the argument njob. Assume that the jobs are independent of each other so that
they can be processed concurrently. Suppose that you want to parallelize this
program. What if the processing time varies significantly from job to job, and
neither block nor cyclic distribution does a good job in load balancing? Or what if
you are using a heterogeneous environment where performance of machines is
not uniform? Master/worker style of execution is suitable for such cases.

Figure 117. Master/Worker Model

Figure 117 shows a master/worker implementation of the original program. The
master (process 0) dispatches jobs to workers in the first-come first-ordered
basis. When a worker finishes a job, it sends a message to the master. By
specifying MPI_ANY_SOURCE as the argument of MPI_RECV, the master
process receives any message that comes first. After receiving the message, the
sender is identified by looking into the status array. Messages sent from a worker
to the master contains dummy data (iwk), because the message is only used to
find out which worker gets free. In return, the master sends the worker the job
number that the worker should do next. When all the jobs are completed, the
master sends -1 to workers, which lets workers exit from the infinite loop waiting
for more jobs.

4.8 Using Parallel ESSL

Parallel ESSL is a scalable mathematical subroutine library that supports parallel
processing applications on RS/6000 SP systems and clusters of RS/6000
workstations. It is highly tuned for POWER2 and PowerPC (including POWER3)
processors and the RS/6000 SP architecture. It is recommended to use this
library where applicable.

4.8.1 ESSL
Parallel ESSL is based on ESSL (Engineering and Scientific Subroutine Library).
Indeed, some of the Parallel ESSL subroutines call ESSL subroutines internally.
Before using Parallel ESSL, remember that it may happen that your program can
Advanced MPI Programming 139

be parallelized using ESSL subroutines. In such cases, you need to assess which
option gives you a benefit. Given below are two examples that use ESSL
subroutines for parallelization.

Matrix multiplication

Both ESSL and Parallel ESSL have subroutines for computing a product of
two matrices, DGEMM and PDGEMM, for example. But parallel execution
does not necessarily imply the use of Parallel ESSL. Figure 118 illustrates how
a serial ESSL subroutine is used for parallel execution.

Figure 118. Using ESSL for Matrix Multiplication

In this figure, each process has all the elements of matrix A and one-third of B
and C. Due to the property of matrix multiplication, each one-third piece of C
can be calculated locally by using an ESSL subroutine.

Solving independent linear equations

Suppose that you have to solve six independent linear equations
(i=1..6) using three processes. For linear equations, there is an ESSL
subroutine DGETRF and a Parallel ESSL subroutine PDGETRF. As Figure
119 shows, when using Parallel ESSL, communication overhead is inevitable,
whereas using ESSL involves no communication at all. In this case, you
should use ESSL (with the viewpoint of performance) unless the matrices are
too large to fit in the real memory of one node.

Aixi bi=
140 RS/6000 SP: Practical MPI Programming

Figure 119. Using ESSL for Solving Independent Linear Equations

For additional information about ESSL, see Engineering and Scientific Subroutine
Library for AIX Guide and Reference, SA22-7272.

4.8.2 An Overview of Parallel ESSL
Parallel ESSL provides subroutines in the following areas.

• Level 2 Parallel Basic Linear Algebra Subprograms (PBLAS)

• Level 3 PBLAS

• Linear Algebraic Equations

• Eigensystem Analysis and Singular Value Analysis

• Fourier Transforms

• Random Number Generation

The subroutines run under the AIX operating system and can be called from
application programs written in Fortran, C, C++, and High Performance Fortran
(HPF). For communication, Parallel ESSL includes the Basic Linear Algebra
Communications Subprograms (BLACS), which use the Parallel Environment
(PE) Message Passing Interface (MPI). For computations, Parallel ESSL uses the
ESSL for AIX subroutines. Therefore in linking the program, you need to specify
ESSL and BLACS libraries as well as the Parallel ESSL library. The following is a
sample compilation and execution on POWER2 nodes.

$ mpxlf -O3 -qstrict -qarch=pwr2 -lesslp2 -lpesslp2 -lblacsp2
sample.f
$ a.out -procs 3
Advanced MPI Programming 141

For POWER3 nodes, do the following.

$ mpxlf -O3 -qstrict -qarch=pwr3 -lessl -lpessl -lblacs sample.f
$ a.out -procs 3

If you have three POWER3 SMP nodes with two processors and your only
concern is the subroutine call to Parallel ESSL, there are three options for
compiling and executing the program.

The first option is the previous example where one User Space process runs on
each node.

The second option is to use the same executable as the first option but to run two
processes on each node, so there are six processes in total. As discussed in
Chapter 1.2.3, “MPP Based on SMP Nodes (Hybrid MPP)” on page 4, you have to
consider the performance of intranode communication and internode
communication in this case; it is possible that the first option is faster than the
second although the first one uses half the number of processes.

The third option is to use SMP-enabled Parallel ESSL subroutines, which is
available by linking appropriate libraries.

$ mpxlf_r -O3 -qstrict -qarch=pwr3 -lesslsmp -lpesslsmp
-lblacssmp sample.f
$ a.out -procs 3

Use mpxlf_r in order to link to thread-safe libraries.

If you are using Parallel ESSL Version 1, you might get a performance
improvement by specifying MP_CSS_INTERRUPT as “yes” (default is “no”). But
the behavior of the code other than the Parallel ESSL subroutines is unknown.
So, compare the two cases and take the faster one. If you want to turn on and off
MP_CSS_INTERRUPT dynamically, you can use MP_ENABLEINTR and
MP_DISABLEINTR subroutines in the program. See MPI Programming and
Subroutine Reference Version 2 Release 4, GC23-3894 for details.

If you are using Parallel ESSL Version 2, MP_CSS_INERRUPT is set dynamically
by Parallel ESSL subroutines. Therefore, you only need to set it if it improves the
performance of the other part of the program.

In addition, if you are using the MPI threaded library and only a single message
passing thread, specify MP_SINGLE_THREAD=yes to minimize thread
overhead. More detailed information can be found in Parallel Engineering and
Scientific Subroutine Library for AIX Guide and Reference, SA22-7273.

4.8.3 How to Specify Matrices in Parallel ESSL
Parallel ESSL requires shrunk arrays as input in a complicated manner, and you
need to call several BLACS subroutines to prepare arrays and their data
structures for Parallel ESSL. For a matrix A, each process holds a shrunk matrix
a, where A and a are called the global matrix and local matrix, respectively.
142 RS/6000 SP: Practical MPI Programming

Figure 120. Global Matrix

Figure 120 illustrates a sample global matrix. The global matrix is an imaginary
entity. In reality, it is stored as a combination of local matrices in processes, the
process grid, and the array descriptor, which are described shortly. Note that the
following setting is for Parallel ESSL subroutines related to dense matrices. For
subroutines dealing with sparse matrices, another data structure is used.

The global matrix A with size M_A x N_A is divided into blocks by the block-cyclic
distribution. Each block is an MB_A x NB_A matrix. The assignment of blocks to
processes is determined by the process grid, which is identified by an integer
called context. In Figure 121 on page 144 (a), the context is represented by a
variable CTXT_A. The process grid is patched to the global matrix block by block. In
doing so, process (RSRC_A, CSRC_A) in the process grid (process 4 in the case of
Figure 121 (a)) is adjusted to the upper left block of the global matrix. In Figure
120, the number in the global matrix indicates which rank the element belongs to.
Then the blocks belonging to the same process are packed together conserving
their relative order in the global matrix. This packed matrix is nothing more than
the local matrix. The leading dimension of the local matrix, that is, the number of
rows of the local matrix, is specified by LLD_A. The value of LLD_Amay be different
from process to process. The eight values, M_A, N_A, MB_A, NB_A, CTXT_A, RSRC_A,
CSRC_A, and LLD_A, combined with the descriptor type DTYPE_A=1 constitute the
array descriptor (Figure 121 (b)), which is an integer array with nine elements. A
type 1 array descriptor is used in the Level 2 and 3 PBLAS, dense linear
algebraic equations, and eigensystem analysis and singular value analysis
subroutines. Other than type 1, there are type 501 and type 502, which are used
for subroutine PDPBSV (positive definite symmetric band matrix factorization and
solve) and so on.
Advanced MPI Programming 143

Figure 121. The Process Grid and the Array Descriptor

Given the process grid and the array descriptor shown in Figure 121, the local
matrix representation of the global matrix in Figure 120 becomes as follows.

Figure 122. Local Matrices

Parallel ESSL subroutines can take either the entire global matrix or a part of it
for computation. You have to specify the submatrix which a Parallel ESSL
subroutine operates on. In Figure 120 on page 143 and Figure 122, the elements
within this submatrix are printed in boldface, and the other elements are in italic.

The format of the descriptor array given here is for Parallel ESSL Version 2.1. If
you are using a previous version of Parallel ESSL, consult the reference
manual for the difference.

Important
144 RS/6000 SP: Practical MPI Programming

When you call a Parallel ESSL subroutine, the following four integers are
necessary.

m The number of rows in the submatrix

n The number of columns in the submatrix

ia The row index of the global matrix, identifying the first row of the
submatrix

ja The column index of the global matrix, identifying the first column
of the submatrix

There are two things missing in the above description. How do you specify the
process grid? And do you need to calculate the effective size of the local matrix
by yourself (see LOCp(M_A) and LOCq(N_A) in Figure 122). The answers to these
questions are given in the next section.

4.8.4 Utility Subroutines for Parallel ESSL
The following is a reference of several utility subroutines for creating process
grids and getting information from them.

4.8.4.1 BLACS_GET

Parameters

INTEGER icontxt The default system context. (OUT)

Description The most common use is shown in the above box. It retrieves
a default system context for input into BLACS_GRIDINIT or
BLACS_GRIDMAP. All processes that will be involved in
icontxt must call this routine.

4.8.4.2 BLACS_GRIDINIT

Parameters

INTEGER icontxt The system context to be used in creating the BLACS context
and a newly created context is returned. (INOUT)

CHARACTER(1) order Indicates how to map processes into the process grid. If
order=’R’, row-major natural ordering is used. This is the
default. If order=’C’, column-major natural ordering is used.
(IN)

INTEGER nprow The number of rows in this process grid. (IN)

CALL BLACS_GET(0, 0, icontxt)

Usage

CALL BLACS_GRIDINIT(icontxt, order, nprow, npcol)

Usage
Advanced MPI Programming 145

INTEGER npcol The number of columns in this process grid. (IN)

Description You call the BLACS_GRIDINIT routine when you want to
map the processes sequentially in row-major order or
column-major order into the process grid. You must specify
the same input argument values in the calls to
BLACS_GRIDINIT on every process.

Figure 123. Row-Major and Column-Major Process Grids

Figure 123 shows row-major and column-major grids of six processes with the
shape 2x3.

4.8.4.3 BLACS_GRIDINFO

Parameters

INTEGER icontxt The context that you want to get the information of. (IN)

INTEGER nprow The number of rows in this process grid. (OUT)

INTEGER npcol The number of columns in this process grid. (OUT)

INTEGER myrow The process grid row index of the process which calls this
subroutine. (OUT)

INTEGER mycol The process grid column index of the process which calls
this subroutine. (OUT)

Description Call this subroutine to obtain the process row and column index.

CALL BLACS_GRIDINFO(icontxt, nprow, npcol, myrow, mycol)

Usage
146 RS/6000 SP: Practical MPI Programming

Figure 124. BLACS_GRIDINFO

Figure 124 on page 147 shows a process grid and the return values of
BLACS_GRIDINFO for processes in the grid.

4.8.4.4 NUMROC

Parameters

INTEGER n The number of rows (M_A) or columns (N_A) in a global
matrix that has been block-cyclically distributed. (IN)

INTEGER nb The row block size (MB_A) or the column block size (NB_A).
(IN)

INTEGER iproc The process row index (myrow) or the process column index
(mycol). (IN)

INTEGER isrcproc The process row (RSRC_A) or the process column (CSRC_A)
over which the first row or column, respectively, of the global
matrix is distributed. (IN)

INTEGER nprocs The number of rows (nprow) or the number of columns
(npcol) in the process grid. (IN)

INTEGER num The local number of rows or columns of a block-cyclically
distributed matrix contained in a process row or process
column, respectively, indicated by the calling sequence
argument iproc. (OUT)

Description This function computes either the local number of rows,
LOCp(M_A), or columns, LOCq(N_A). If you need both, you
have to call this function twice. See also Figure 122 on page
144.

The program sequence of calling a Parallel ESSL subroutine is outlined as
follows:

num = NUMROC(n, nb, iproc, isrcproc, nprocs)

Usage
Advanced MPI Programming 147

INTEGER desc_a(9)
...
DIMENSION a(LLD_A, ...)
CALL BLACS_GET(0, 0, CTXT_A)
CALL BLACS_GRIDINIT(CTXT_A, ’R’, p, q)
CALL BLACS_GRIDINFO(CTXT_A, p, q, myrow, mycol)
LOCp = NUMROC(M_A, MB_A, myrow, RSRC_A, p)
LOCq = NUMROC(N_A, NB_A, mycol, CSRC_A, q)
desc_a(1) = 1
desc_a(2) = CTXT_A
desc_a(3) = M_A
desc_a(4) = N_A
desc_a(5) = MB_A
desc_a(6) = NB_A
desc_a(7) = RSRC_A
desc_a(8) = CSRC_A
desc_a(9) = LLD_A
Each process set values of its local matrix a()
CALL pessl_subroutine (..., m, n, a, ia, ja, desc_a,...)
...

4.8.5 LU Factorization by Parallel ESSL
This section takes an LU factorization as an example of how to use Parallel ESSL
in real programs. There are two subroutines involved in solving a dense linear
equation: PDGETRF factorizes the matrix and PDGETRS gets the solution based
on the results of PDGETRF.

Parameters

INTEGER m The number of rows in submatrix A and the number of
elements in vector IPVT used in the computation. (IN)

INTEGER n The number of columns in submatrix A used in the
computation. (IN)

REAL*8 a() The local part of the global general matrix A, used in the
system of equations. This identifies the first element of the
local array a. On return from the subroutine call, a is
replaced by the results of the factorization. (INOUT)

INTEGER ia The row index of the global matrix A, identifying the first
row of the submatrix A. (IN)

INTEGER ja The column index of the global matrix A, identifying the
first column of the submatrix A. (IN)

INTEGER desc_a() The array descriptor for global matrix A. (IN)

INTEGER ipvt() The local part of the global vector IPVT, containing the
pivot information necessary to construct matrix L from the
information contained in the (output) transformed matrix A.
This identifies the first element of the local array ipvt.
(OUT)

CALL PDGETRF(m, n, a, ia, ja, desc_a, ipvt, info)

Usage
148 RS/6000 SP: Practical MPI Programming

INTEGER info If info=0, global submatrix A is not singular, and the
factorization completed normally. If info>0, global submatrix A
is singular. Even so, the factorization is completed. However,
if you call PDGETRS with these factors, results are
unpredictable. (OUT)

Description This subroutine factors double-precision general matrix A
using Gaussian elimination with partial pivoting to compute
the LU factorization of A. All processes involved in the
computation need to call this subroutine. The global general
matrix A must be distributed using a square block-cyclic
distribution; that is, MB_A=NB_A. If you plan to call
PDGETRS, the solver, after calling PDGETRF, m=n must hold.

Performance Consideration
If the size of the global matrix is large enough, the suggested
block size is 70 for POWER2 nodes and 40 for POWER and
POWER3 nodes. If you link the program to -lpesslsmp

-lesslsmp and use POWER3 SMP nodes, the recommended
block size is 100. The shape of the processor grid is
suggested to be square or as close to square as possible for
better performance. If the grid is not square, let the number of
rows (p) be less than the number of columns (q) in the grid
(meaning, p<q). See “Coding Tips for Optimizing Parallel
Performance” in Parallel Engineering and Scientific
Subroutine Library for AIX Guide and Reference, SA22-7273
for details.

Parameters

CHARACTER(1) trans If trans=’N’, A is used in the computation. If trans=’T’, AT

is used in the computation. (IN)

INTEGER n The order of the factored matrix A and the number of rows
in submatrix B. (IN)

INTEGER nrhs The number of right-hand sides, that is, the number of
columns in submatrix B used in the computation. (IN)

REAL*8 a() The local part of the global general matrix A, containing
the factorization of matrix A produced by a preceding call
to PDGETRF. This identifies the first element of the local
array a. (IN)

INTEGER ia The row index of the global matrix A, identifying the first
row of the submatrix A. (IN)

INTEGER ja The column index of the global matrix A, identifying the
first column of the submatrix A. (IN)

INTEGER desc_a() The array descriptor for global matrix A. (IN)

INTEGER ipvt() The local part of the global vector IPVT, containing the
pivoting indices produced on a preceding call to

CALL PDGETRS(trans, n, nrhs, a, ia, ja, desc_a, ipvt,
b, ib, jb, desc_b, info)

Usage
Advanced MPI Programming 149

PDGETRF. This identifies the first element of the local
array ipvt. (IN)

REAL*8 b() The local part of the global general matrix B, containing
the right-hand sides of the system. This identifies the first
element of the local array b. On return from the
subroutine call, it is replaced by the updated local part of
the global matrix B, containing the solution vectors.
(INOUT)

INTEGER ib The row index of the global matrix B, identifying the first
row of the submatrix B. (IN)

INTEGER jb The column index of the global matrix B, identifying the
first column of the submatrix B. (IN)

INTEGER desc_b() The array descriptor for global matrix B. (IN)

INTEGER info info=0 is always returned. (OUT)

Description PDGETRS solves one of the following systems of
equations for multiple right-hand sides: AX = B or ATX =
B. It uses the results of the factorization of matrix A,
produced by a preceding call to PDGETRF. The following
relations must hold: CTXT_A=CTXT_B and
MB_A=NB_A=MB_B. In addition, in the process grid, the
process row containing the first row of the submatrix A
must also contain the first row of the submatrix B, which
means RSRC_A=RSRC_B in the case of ia=ib=1.

Figure 125. Global Matrices, Processor Grids, and Array Descriptors
150 RS/6000 SP: Practical MPI Programming

Figure 125 shows how the global matrix, the pivot vector, and the right-hand-side
vector are divided into blocks by the definition of processor grids and array
descriptors.

Figure 126. Local Matrices

Figure 126 shows the resulting local matrices. Note that processes 1 and 3 do not
have valid elements for the local matrix b. Since global matrix B has only one
column, only the processes in the first column of the process grid have some
portion for B.

This sample program solves one system of linear equations (nrhs=1) with ia, ja,
ib, and jb all set to 1 for simplicity.

PROGRAM main
IMPLICIT REAL*8 (a-h,o-z)
INCLUDE ’mpif.h’
PARAMETER (n = 2000, iblock = 80, nprow = 3, npcol = 4)
DIMENSION a(n,n), b(n), btemp(n)
INTEGER idesc_a(9), idesc_b(9)
REAL*8, ALLOCATABLE :: aa(:,:), bb(:)
INTEGER, ALLOCATABLE :: iipvt(:)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
IF (nprocs /= nprow * npcol) THEN

PRINT *,’Incorrect number of processes’
CALL MPI_FINALIZE(ierr)
STOP

ENDIF
CALL BLACS_GET(0, 0, ictxt)
CALL BLACS_GRIDINIT(ictxt, ’R’, nprow, npcol)
CALL BLACS_GRIDINFO(ictxt, idummy1, idummy2, myrow, mycol)
nrow = MAX(1, NUMROC(n, iblock, myrow, 0, nprow))
ncol = MAX(1, NUMROC(n, iblock, mycol, 0, npcol))
ALLOCATE (aa(nrow,ncol), bb(nrow), iipvt(nrow))
idesc_a(1) = 1
idesc_a(2) = ictxt
Advanced MPI Programming 151

idesc_a(3) = n
idesc_a(4) = n
idesc_a(5) = iblock
idesc_a(6) = iblock
idesc_a(7) = 0
idesc_a(8) = 0
idesc_a(9) = nrow
idesc_b(1) = 1
idesc_b(2) = ictxt
idesc_b(3) = n
idesc_b(4) = 1
idesc_b(5) = iblock
idesc_b(6) = 1
idesc_b(7) = 0
idesc_b(8) = 0
idesc_b(9) = nrow
Set values of global matrices A and B
jcnt = 0
DO jj = mycol * iblock + 1, n, npcol * iblock

DO j = jj, MIN(jj + iblock - 1, n)
jcnt = jcnt + 1
icnt = 0
DO ii = myrow * iblock + 1, n, nprow * iblock

DO i = ii, MIN(ii + iblock - 1, n)
icnt = icnt + 1
aa(icnt,jcnt) = a(i,j)

ENDDO
ENDDO

ENDDO
ENDDO
IF (mycol == 0) THEN

icnt = 0
DO ii = myrow * iblock + 1, n, nprow * iblock

DO i = ii, MIN(ii + iblock - 1, n)
icnt = icnt + 1
bb(icnt) = b(i)

ENDDO
ENDDO

ENDIF
CALL PDGETRF(n, n, aa, 1, 1, idesc_a, iipvt, info)
IF (info /= 0) PRINT *,’Error in PDGETRF’
CALL PDGETRS(’n’, n, 1, aa, 1, 1, idesc_a, iipvt, bb, 1, 1,

& idesc_b, info)
IF (info /= 0) PRINT *,’Error in PDGETRS’
DO i = 1, n

btemp(i) = 0.0
ENDDO
IF (mycol == 0) THEN

icnt = 0
DO ii = myrow * iblock + 1, n, nprow * iblock

DO i = ii, MIN(ii + iblock - 1, n)
icnt = icnt + 1
btemp(i) = bb(icnt)

ENDDO
ENDDO

ENDIF
CALL MPI_ALLREDUCE(btemp, b, n, MPI_DOUBLE_PRECISION, MPI_SUM,
& MPI_COMM_WORLD, ierr)
152 RS/6000 SP: Practical MPI Programming

...
CALL MPI_FINALIZE(ierr)
END

For the optimal process grid and block size, you may have to experiment.

4.9 Multi-Frontal Method

The multi-frontal method is an algorithm for factoring sparse symmetric matrices.
For sparse matrices with wide bands, the multi-frontal method is more efficient
than the skyline method in terms of performance and memory consumption. The
current version of ESSL (Version 3.1) and Parallel ESSL (Version 2.1) do not
have subroutines using the multi-frontal method. As a complement to ESSL and
Parallel ESSL, the Watson Symmetric Sparse Matrix Package (WSSMP) provides
a high-performance, robust, and easy to use subroutines that exploit the modified
multi-frontal algorithm. WSSMP can be used as a serial package, or in a
shared-memory multiprocessor environment, or as a scalable parallel solver in a
message-passing environment, where each node can either be a uniprocessor or
a shared-memory multiprocessor. The details about WSSMP subroutines and
how to get them can be found at
http://www.research.ibm.com/mathsci/ams/ams_WSSMP.htm

The following is a brief description of WSSMP and PWSSMP, the parallel version
of WSSMP.

• WSSMP and PWSSMP solve linear equations in the following steps.

1. Ordering

2. Symbolic factorization

3. Cholesky or LDLT factorization

4. Forward and backward elimination

5. Iterative refinement

• PWSSMP has two modes: the 0-master mode and the peer mode. In the
0-master mode, process 0 has the whole matrix, whereas in the peer mode, all
processes have a shrunk matrix.

As written in the user’s guide you can retrieve from the URL mentioned above,
WSSMP and PWSSMP libraries may be used solely for educational, research,
and benchmarking purposes. Any other use of the libraries requires prior written
permission from IBM Corporation.
Advanced MPI Programming 153

154 RS/6000 SP: Practical MPI Programming

Appendix A. How to Run Parallel Jobs on RS/6000 SP

This appendix gives a brief overview to Parallel Environment (PE) that you should
understand when you run parallel jobs on RS/6000 SP. Detailed descriptions are
found in the following documents:

• IBM Parallel Environment for AIX Operation and Use, Volume 1: Using the
Parallel Operating Environment Version 2 Release 4, SC28-1979

• IBM LoadLeveler for AIX Using and Administering Version 2 Release 1,
SA22-7311

This chapter assumes that you are using Parallel Environment 2.4.

A.1 AIX Parallel Environment

In Parallel Environment 2.4, the job control subsystem is unified in LoadLeveler.
Prior to PE 2.4, parallel jobs are managed through either LoadLeveler or
Resource Manager, which is a part of PE. The following are the highlight of PE
2.4.

• You can run up to four User Space (US) processes per node.

• The MPI library includes support for a subset of MPI I/O.

• With regard to MPI/LAPI jobs, PE supports a maximum of 2048 processes for
IP and 1024 processes for US.

Note that PE compiles and runs all applications as 32 bit applications: 64-bit
applications are not yet supported. Aside from the MPI library, PE includes tools
for debugging, profiling, and visualizing parallel programs. For details, see IBM
Parallel Environment for AIX Operation and Use, Volume 2 Part 1: Debugging
and Visualizing Version 2 Release 4, SC28-1979 and IBM Parallel Environment
for AIX Operation and Use, Volume 2 Part 2: Profiling Version 2 Release 4,
SC28-1980.

A.2 Compiling Parallel Programs

To compile, use the commands mpcc, mpCC, or mpxlf. These commands not only
compile your program, but also link in the Partition Manager and message
passing interface libraries. To compile threaded C, C++, or Fortran programs, use
the mpcc_r, mpCC_r, or mpxlf_r commands. These commands can also be used to
compile non-threaded programs with the threaded libraries such as
libpesslsmp.a. There are a lot of compiler options for optimization. To start with,
use -qarch=pwr2 -O3 -qstrict on POWER2 nodes and -qarch=pwr3 -O3 -qstrict

on POWER3 nodes. For more options, consult the User’s Guide for XL Fortran.

A.3 Running Parallel Programs

First, make sure that each node can access the executable, especially, if you
place the executable on a local file system. Copy the executable to remote nodes
that will be involved in parallel execution. Setup the .rhosts file appropriately so
that remote shell command (rsh) works for the nodes that you are going to use.
Note that the root user cannot run parallel jobs in Parallel Environment for AIX.
© Copyright IBM Corp. 1999 155

A.3.1 Specifying Nodes

You can use a host list file to specify the nodes for parallel execution, or you can
let LoadLeveler do the job. In the latter case, you generaly cannot tell which
nodes will be used beforehand, but you can know them afterwards by use of the
MP_SAVEHOSTFILE environment variable.

Host list Set the environment variable MP_HOSTFILE as the name of the
text file that contains the list of nodes (one node for each line). If
there is a file host.list in the current directory, it is automatically
taken as MP_HOSTFILE. In this case, even if you set
MP_RMPOOL, the entries in host.list are used for node
allocation.

LoadLeveler Set the environment variable MP_RMPOOL as an appropriate
integer. The command /usr/lpp/LoadL/full/bin/llstatus -l

shows you a list of machines defined. Nodes which are in the
class inter_class can be used for interactive execution of parallel
jobs. Check the value of Pool for that node and use it for
MP_RMPOOL.

The number of processes is specified by the MP_PROCS environment variable or
by the -procs command-line flag. All the environment variables of PE have
corresponding command-line flags. The command-line flags temporarily override
their associated environment variable.

Since PE 2.4 allows you to run up to four User Space processes per node, you
need to know how to specify node allocation. Environment variables MP_NODES
and MP_TASKS_PER_NODE are used for this purpose: MP_NODES tells
LoadLeveler how many nodes you use, and MP_TASKS_PER_NODE specifies
how many processes per node you use. It is sufficient to specify two environment
variables out of MP_PROCS, MP_NODES, and MP_TASKS_PER_NODE. If all of
them are specified, MP_PROCS=MP_NODES x MP_TASKS_PER_NODE must
hold. When you use IP instead of User Space protocol, there is no limitation on
the number of processes per node as long as the total number of processes does
not exceed 2048.

A.3.2 Specifying Protocol and Network Device

The protocol used by PE is either User Space protocol or IP. Set the environment
variable MP_EUILIB as us or ip, respectively. The network device is specified by
MP_EUIDEVICE. The command netstat -i shows you the names of the network
interfaces available on the node. MP_EUIDEVICE can be css0, en0, tr0, fi0, and
so on. Note that when you use User Space protocol (MP_EUILIB=us),
MP_EUIDEVICE is assumed to be css0.

A.3.3 Submitting Parallel Jobs

The following shows how to submit a parallel job. The executable is
/u/nakano/work/a.out and it is assumed to be accessible with the same path name
by the nodes you are going to use. Suppose you run four User Space processes
on two nodes, that is, two User Space processes per node.

From PE using host list

Change directory to /u/nakano/work, and create a file myhosts which contains
the following four lines:
156 RS/6000 SP: Practical MPI Programming

sps01e
sps01e
sps02e
sps02e

Then execute the following.

$ export MP_HOSTFILE=/u/nakano/work/myhosts
$ export MP_EUILIB=us
$ export MP_TASKS_PER_NODE=2
a.out -procs 4

If you are using a C shell, use the setenv command instead of export.

% setenv MP_HOSTFILE /u/nakano/work/myhosts
...

From PE using LoadLeveler

Change directory to /u/nakano/work, and execute the following.

$ export MP_RMPOOL=1
$ export MP_EUILIB=us
$ export MP_TASKS_PER_NODE=2
$ export MP_SAVEHOSTFILE=/u/nakano/work/usedhosts
a.out -procs 4

The value of MP_RMPOOL should be chosen appropriately. (See Appendix
A.3.1, “Specifying Nodes” on page 156.) You can check which nodes were
allocated by using the MP_SAVEHOSTFILE environment variable, if you like.

From LoadLeveler

Create a job command file test.job as follows.

@ class = A_Class
@ job_type = parallel
@ network.MPI = css0,,US
@ node = 2,2
@ tasks_per_node = 2
@ queue
export MP_SAVEHOSTFILE=/u/nakano/work/usedhosts
a.out

Specify the name of the class appropriately. The keyword node specifies the
minimum and the maximum number of nodes required by the job. Now you
can submit the job as follows.

$ /usr/lpp/LoadL/full/bin/llsubmit test.job

By default, you will receive mail when the job completes, which can be
changed by the notification keyword.

A.4 Monitoring Parallel Jobs

Use /usr/lpp/LoadL/full/bin/llq for listing submitted jobs. The following shows
the sample output.

$ /usr/lpp/LoadL/full/bin/llq
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
sps01e.28.0 nakano 6/9 17:12 R 50 inter_class sps01e

1 job steps in queue, 0 waiting, 0 pending, 1 running, 0 held
How to Run Parallel Jobs on RS/6000 SP 157

By specifying -l option, you get detailed information.

$ /usr/lpp/LoadL/full/bin/llq -l
=============== Job Step sps01e.28.0 ===============

Job Step Id: sps01e.28.0
Job Name: sps01e.28

Step Name: 0
Structure Version: 9

Owner: nakano
Queue Date: Wed Jun 9 17:12:48 JST 1999

Status: Running
Dispatch Time: Wed Jun 9 17:12:48 JST 1999

...

...
Step Type: General Parallel (Interactive)

Submitting Host: sps01e
Notify User: nakano@sps01e

Shell: /bin/ksh
LoadLeveler Group: No_Group

Class: inter_class
...
...
Adapter Requirement: (css0,MPI,not_shared,US)

Node

Name :
Requirements : (Pool == 1) && (Arch == "R6000") && (OpSys == "AIX43")
Preferences :
Node minimum : 2
Node maximum : 2
Node actual : 2
Allocated Hosts : sps01e::css0(0,MPI,us),css0(1,MPI,us)

+ sps02e::css0(0,MPI,us),css0(1,MPI,us)

Task

Num Task Inst:
Task Instance:

llq: Specify -x option in addition to -l option to obtain Task Instance information.

1 job steps in queue, 0 waiting, 0 pending, 1 running, 0 held

The output section “Allocated Hosts”, shown in the preceding example, indicates
on which nodes the parallel processes are running. In the above output, you see
four User Space processes are running on nodes sps01e and sps02e, two
processes per node.

A.5 Standard Output and Standard Error

The following three environment variables are often used to control standard
output and standard error.

You can set the environment variable MP_LABELIO as yes, so that output from
the parallel processes of your program are labeled by rank id. Default is no.

Using the environment variable MP_STDOUTMODE, you can specify that:

• All tasks should write output data to standard output asynchronously. This is
unordered output mode. (MP_STDOUTMODE=unordered)

• Output data from each parallel process should be written to its own buffer, and
later all buffers should be flushed, in rank order, to standard output. This is
ordered output mode. (MP_STDOUTMODE=ordered)
158 RS/6000 SP: Practical MPI Programming

• A single process should write to standard output. This is single output mode.
(MP_STDOUTMODE=rank_id)

The default is unordered. The ordered and unordered modes are mainly used
when you are developing or debugging a code. The following example shows
how MP_STDOUTMODE and MP_LABELIO affect the output.

$ cat test.f
PRINT *,’Hello, SP’
END

$ mpxlf test.f
** _main === End of Compilation 1 ===
1501-510 Compilation successful for file test.f.
$ export MP_LABELIO=yes
$ export MP_STDOUTMODE=unordered; a.out -procs 3

1: Hello, SP
0: Hello, SP
2: Hello, SP

$ export MP_STDOUTMODE=ordered; a.out -procs 3
0: Hello, SP
1: Hello, SP
2: Hello, SP

$ export MP_STDOUTMODE=0; a.out -procs 3
0: Hello, SP

You can set the environment variable MP_INFOLEVEL to specify the level of
messages you want from PE. The value of MP_INFOLEVEL should be one of
0..6. The integers 0, 1, and 2 give you different levels of informational, warning,
and error messages. The integers 3 through 6 indicate debug levels that provide
additional debugging and diagnostic information. Default is 1.

A.6 Environment Variable MP_EAGER_LIMIT

The environment variable MP_EAGER_LIMIT changes the threshold value for the
message size, above which rendezvous protocol is used.

To ensure that at least 32 messages can be outstanding between any two
processes, MP_EAGER_LIMIT will be adjusted based on the number of
processes according to the following table (when MP_EAGER_LIMIT and
MP_BUFFER_MEM have not been set by the user):

Table 10. Default Value of MP_EAGER_LIMIT

The maximum value of MP_EAGER_LIMIT is 65536 KB. 65536 KB is also equal
to the maximum value of MP_BUFFER_MEM, which is the default of
MP_BUFFER_MEM.

Number of processes MP_EAGER_LIMIT (KB)

1 - 16 4096

17 - 32 2048

33 - 64 1024

65 - 128 512
How to Run Parallel Jobs on RS/6000 SP 159

MPI uses two message protocols, eager and rendezvous. With eager protocol the
message is sent to the destination without knowing there is a matching receive. If
there is not one, the message is held in an early arrival buffer
(MP_BUFFER_MEM). By default, small messages use eager protocol and large
ones use rendezvous. In rendezvous, the sending call does not return until the
destination receive is found so the rate of receivers limits senders. With eager,
the senders run wild. If you set MP_EAGER_LIMIT=0, you will make all
messages use rendezvous protocol, but forcing rendezvous does increase
latency and therefore affects performance in many cases.
160 RS/6000 SP: Practical MPI Programming

Appendix B. Frequently Used MPI Subroutines Illustrated

Throughout this appendix, it is assumed that the environment variable
MP_STDOUTMODE is set as ordered and MP_LABELIO is set to yes in running
sample programs. In the parameters section, the term CHOICE indicates that any
Fortran data type is valid.

B.1 Environmental Subroutines

In the sections that follow, several evironmental subroutines are introduced.

B.1.1 MPI_INIT

Purpose Initializes MPI.

Parameters

INTEGER ierror The Fortran return code

Description This routine initializes MPI. All MPI programs must call this
routine once and only once before any other MPI routine (with
the exception of MPI_INITIALIZED). Non-MPI statements can
precede MPI_INIT.

Sample program

PROGRAM init
INCLUDE ’mpif.h’
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
PRINT *,’nprocs =’,nprocs,’myrank =’,myrank
CALL MPI_FINALIZE(ierr)
END

Sample execution

$ a.out -procs 3
0: nprocs = 3 myrank = 0
1: nprocs = 3 myrank = 1
2: nprocs = 3 myrank = 2

B.1.2 MPI_COMM_SIZE

Purpose Returns the number of processes in the group associated with a
communicator.

CALL MPI_INIT(ierror)

Usage

CALL MPI_COMM_SIZE(comm, size, ierror)

Usage
© Copyright IBM Corp. 1999 161

Parameters

INTEGER comm The communicator (handle) (IN)

INTEGER size An integer specifying the number of processes in the
group comm (OUT)

INTEGER ierror The Fortran return code

Description This routine returns the size of the group associated with a
communicator.

Sample program and execution

See the sample given in B.1.1, “MPI_INIT” on page 161.

B.1.3 MPI_COMM_RANK

Purpose Returns the rank of the local process in the group associated with
a communicator.

Parameters

INTEGER comm The communicator (handle) (IN)

INTEGER rank An integer specifying the rank of the calling process in
group comm (OUT)

INTEGER ierror The Fortran return code

Description This routine returns the rank of the local process in the
group associated with a communicator.
MPI_COMM_RANK indicates the rank of the process that
calls it in the range from 0..size - 1, where size is the
return value of MPI_COMM_SIZE.

Sample program and execution

See the sample given in B.1.1, “MPI_INIT” on page 161.

B.1.4 MPI_FINALIZE

Purpose Terminates all MPI processing.

Parameters

INTEGER ierror The Fortran return code

Description Make sure this routine is the last MPI call. Any MPI calls
made after MPI_FINALIZE raise an error. You must be
sure that all pending communications involving a process
have completed before the process calls MPI_FINALIZE.

CALL MPI_COMM_RANK(comm, rank, ierror)

Usage

CALL MPI_FINALIZE(ierror)

Usage
162 RS/6000 SP: Practical MPI Programming

You must also be sure that all files opened by the process
have been closed before the process calls MPI_FINALIZE.
Although MPI_FINALIZE terminates MPI processing, it
does not terminate the process. It is possible to continue
with non-MPI processing after calling MPI_FINALIZE, but
no other MPI calls (including MPI_INIT) can be made.

Sample program and execution

See the sample given in B.1.1, “MPI_INIT” on page 161.

B.1.5 MPI_ABORT

Purpose Forces all processes of an MPI job to terminate.

Parameters

INTEGER comm The communicator of the processes to abort (IN)

INTEGER errorcode The error code returned to the invoking environment (IN)

INTEGER ierror The Fortran return code

Description If any process calls this routine, all processes in the job are
forced to terminate. The argument comm currently is not
used. The low order 8 bits of errorcode are returned as an
AIX return code. This subroutine can be used when only
one process reads data from a file and it finds an error while
reading.

B.2 Collective Communication Subroutines

In the sections that follow, several communication subroutines are introduced.

B.2.1 MPI_BCAST

Purpose Broadcasts a message from root to all processes in comm.

Parameters

(CHOICE) buffer The starting address of the buffer (INOUT)

INTEGER count The number of elements in the buffer (IN)

INTEGER datatype The data type of the buffer elements (handle) (IN)

INTEGER root The rank of the root process (IN)

INTEGER comm The communicator (handle) (IN)

INTEGER ierror The Fortran return code

CALL MPI_ABORT(comm, errorcode, ierror)

Usage

CALL MPI_BCAST(buffer, count, datatype, root, comm, ierror)

Usage
Frequently Used MPI Subroutines Illustrated 163

Description This routine broadcasts a message from root to all
processes in comm. The contents of root’s communication
buffer is copied to all processes on return. The type
signature of count, datatype on any process must be equal
to the type signature of count, datatype at the root. This
means the amount of data sent must be equal to the amount
of data received, pairwise between each process and the
root. Distinct type maps between sender and receiver are
allowed. All processes in comm need to call this routine.

Figure 127. MPI_BCAST

Sample program

PROGRAM bcast
INCLUDE ’mpif.h’
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
IF (myrank==0) THEN

ibuf=12345
ELSE

ibuf=0
ENDIF
CALL MPI_BCAST(ibuf, 1, MPI_INTEGER, 0,

& MPI_COMM_WORLD, ierr)
PRINT *,’ibuf =’,ibuf
CALL MPI_FINALIZE(ierr)
END

Sample execution

$ a.out -procs 3
0: ibuf = 12345
1: ibuf = 12345
2: ibuf = 12345

B.2.2 MPE_IBCAST (IBM Extension)

Purpose Performs a nonblocking broadcast operation.
164 RS/6000 SP: Practical MPI Programming

Parameters

(CHOICE) buffer The starting address of the buffer (INOUT)

INTEGER count The number of elements in the buffer (IN)

INTEGER datatype The data type of the buffer elements (handle) (IN)

INTEGER root The rank of the root process (IN)

INTEGER comm The communicator (handle) (IN)

INTEGER request The communication request (handle) (OUT)

INTEGER ierror The Fortran return code

Description This routine is a nonblocking version of MPI_BCAST. It
performs the same function as MPI_BCAST except that it
returns a request handle that must be explicitly completed by
using one of the MPI wait or test operations. All processes in
comm need to call this routine. The MPE prefix used with this
routine indicates that it is an IBM extension to the MPI
standard and is not part of the standard itself. MPE routines
are provided to enhance the function and the performance of
user applications, but applications that use them will not be
directly portable to other MPI implementations. Nonblocking
collective communication routines allow for increased
efficiency and flexibility in some applications. Because these
routines do not synchronize the participating processes like
blocking collective routines generally do, processes running
at different speeds do not waste time waiting for each other.
Applications using nonblocking collective calls often perform
best when they run in interrupt mode.

Sample program

PROGRAM ibcast
INCLUDE ’mpif.h’
INTEGER istatus(MPI_STATUS_SIZE)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
IF (myrank==0) THEN

ibuf=12345
ELSE

ibuf=0
ENDIF
CALL MPE_IBCAST(ibuf, 1, MPI_INTEGER, 0,

& MPI_COMM_WORLD, ireq, ierr)
CALL MPI_WAIT(ireq, istatus, ierr)
PRINT *,’ibuf =’,ibuf
CALL MPI_FINALIZE(ierr)
END

CALL MPE_IBCAST(buffer, count, datatype, root, comm, request, ierror)

Usage
Frequently Used MPI Subroutines Illustrated 165

The above is a non-blocking version of the sample program of MPI_BCAST.
Since MPE_IBCAST is non-blocking, don’t forget to call MPI_WAIT to
complete the transmission.

Sample execution

$ a.out -procs 3
0: ibuf = 12345
1: ibuf = 12345
2: ibuf = 12345

B.2.3 MPI_SCATTER

Purpose Distributes individual messages from root to each process in
comm.

Parameters

(CHOICE) sendbuf The address of the send buffer (significant only at root)
(IN)

INTEGER sendcount The number of elements to be sent to each process, not
the number of total elements to be sent from root
(significant only at root) (IN)

INTEGER sendtype The data type of the send buffer elements (handle,
significant only at root) (IN)

(CHOICE) recvbuf The address of the receive buffer. sendbuf and recvbuf
cannot overlap in memory. (OUT)

INTEGER recvcount The number of elements in the receive buffer (IN)

INTEGER recvtype The data type of the receive buffer elements (handle) (IN)

INTEGER root The rank of the sending process (IN)

INTEGER comm The communicator (handle) (IN)

INTEGER ierror The Fortran return code

Description This routine distributes individual messages from root to
each process in comm. The number of elements sent to
each process is the same (sendcount). The first sendcount
elements are sent to process 0, the next sendcount
elements are sent to process 1, and so on. This routine is
the inverse operation to MPI_GATHER. The type signature
associated with sendcount, sendtype at the root must be
equal to the type signature associated with recvcount,
recvtype at all processes. (Type maps can be different.)
This means the amount of data sent must be equal to the
amount of data received, pairwise between each process
and the root. Distinct type maps between sender and
receiver are allowed. All processes in comm need to call
this routine.

CALL MPI_SCATTER(sendbuf, sendcount, sendtype,
recvbuf, recvcount, recvtype, root, comm, ierror)

Usage
166 RS/6000 SP: Practical MPI Programming

Figure 128. MPI_SCATTER

Sample program

PROGRAM scatter
INCLUDE ’mpif.h’
INTEGER isend(3)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
IF (myrank==0) THEN

DO i=1,nprocs
isend(i)=i

ENDDO
ENDIF
CALL MPI_SCATTER(isend, 1, MPI_INTEGER,

& irecv, 1, MPI_INTEGER, 0,
& MPI_COMM_WORLD, ierr)
PRINT *,’irecv =’,irecv
CALL MPI_FINALIZE(ierr)
END

Sample execution

$ a.out -procs 3
0: irecv = 1
1: irecv = 2
2: irecv = 3

B.2.4 MPI_SCATTERV

Purpose Distributes individual messages from root to each process in
comm. Messages can have different sizes and displacements.

CALL MPI_SCATTERV(sendbuf, sendcounts, displs, sendtype,
recvbuf, recvcount, recvtype, root, comm, ierror)

Usage
Frequently Used MPI Subroutines Illustrated 167

Parameters

(CHOICE) sendbuf The address of the send buffer (significant only at root)
(IN)

INTEGER sendcounts(*)
Integer array (of length group size) that contains the
number of elements to send to each process (significant
only at root) (IN)

INTEGER displs(*) Integer array (of length group size). Entry i specifies the
displacement relative to sendbuf from which to send the
outgoing data to process i (significant only at root) (IN)

INTEGER sendtype The data type of the send buffer elements (handle,
significant only at root) (IN)

(CHOICE) recvbuf The address of the receive buffer. sendbuf and recvbuf
cannot overlap in memory. (OUT)

INTEGER recvcount The number of elements in the receive buffer (IN)

INTEGER recvtype The data type of the receive buffer elements (handle) (IN)

INTEGER root The rank of the sending process (IN)

INTEGER comm The communicator (handle) (IN)

INTEGER ierror The Fortran return code

Description This routine distributes individual messages from root to
each process in comm. Messages can have different sizes
and displacements. With sendcounts as an array,
messages can have varying sizes of data that can be sent
to each process. The array displs allows you the flexibility
of where the data can be taken from the root. The type
signature of sendcount(i), sendtype at the root must be
equal to the type signature of recvcount, recvtype at
process i. (The type maps can be different.) This means
the amount of data sent must be equal to the amount of
data received, pairwise between each process and the
root. Distinct type maps between sender and receiver are
allowed. All processes in comm need to call this routine.
168 RS/6000 SP: Practical MPI Programming

Figure 129. MPI_SCATTERV

Sample program

PROGRAM scatterv
INCLUDE ’mpif.h’
INTEGER isend(6), irecv(3)
INTEGER iscnt(0:2), idisp(0:2)
DATA isend/1,2,2,3,3,3/
DATA iscnt/1,2,3/ idisp/0,1,3/
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
ircnt=myrank+1
CALL MPI_SCATTERV(isend, iscnt, idisp, MPI_INTEGER,

& irecv, ircnt, MPI_INTEGER,
& 0, MPI_COMM_WORLD, ierr)
PRINT *,’irecv =’,irecv
CALL MPI_FINALIZE(ierr)
END

Sample execution

$ a.out -procs 3
0: irecv = 1 0 0
1: irecv = 2 2 0
2: irecv = 3 3 3

B.2.5 MPI_GATHER

Purpose Collects individual messages from each process in comm at the
root process.
Frequently Used MPI Subroutines Illustrated 169

Parameters

(CHOICE) sendbuf The starting address of the send buffer (IN)

INTEGER sendcount The number of elements in the send buffer (IN)

INTEGER sendtype The data type of the send buffer elements (handle) (IN)

(CHOICE) recvbuf The address of the receive buffer. sendbuf and recvbuf
cannot overlap in memory. (significant only at root) (OUT)

INTEGER recvcount The number of elements for any single receive (significant
only at root) (IN)

INTEGER recvtype The data type of the receive buffer elements (handle,
significant only at root) (IN)

INTEGER root The rank of the receiving process (IN)

INTEGER comm The communicator (handle) (IN)

INTEGER ierror The Fortran return code

Description This routine collects individual messages from each
process in comm to the root process and stores them in
rank order. The amount of data gathered from each
process is the same. The type signature of sendcount,
sendtype on process i must be equal to the type signature
of recvcount, recvtype at the root. This means the amount
of data sent must be equal to the amount of data received,
pairwise between each process and the root. Distinct type
maps between sender and receiver are allowed. All
processes in comm need to call this routine.

Figure 130. MPI_GATHER

CALL MPI_GATHER(sendbuf, sendcount, sendtype,
recvbuf, recvcount, recvtype, root, comm, ierror)

Usage
170 RS/6000 SP: Practical MPI Programming

Sample program

PROGRAM gather
INCLUDE ’mpif.h’
INTEGER irecv(3)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
isend = myrank + 1
CALL MPI_GATHER(isend, 1, MPI_INTEGER,

& irecv, 1, MPI_INTEGER, 0,
& MPI_COMM_WORLD, ierr)
IF (myrank==0) THEN

PRINT *,’irecv =’,irecv
ENDIF
CALL MPI_FINALIZE(ierr)
END

Sample execution

$ a.out -procs 3
0: irecv = 1 2 3

B.2.6 MPI_GATHERV

Purpose Collects individual messages from each process in comm to the
root process. Messages can have different sizes and
displacements.

Parameters

(CHOICE) sendbuf The starting address of the send buffer (IN)

INTEGER sendcount The number of elements in the send buffer (IN)

INTEGER sendtype The data type of the send buffer elements (handle) (IN)

(CHOICE) recvbuf The address of the receive buffer. sendbuf and recvbuf
cannot overlap in memory. (significant only at root) (OUT)

INTEGER recvcounts(*)
Integer array (of length group size) that contains the
number of elements received from each process (significant
only at root) (IN)

INTEGER displs(*) Integer array (of length group size), entry i specifies the
displacement relative to recvbuf at which to place the
incoming data from process i (significant only at root) (IN)

INTEGER recvtype The data type of the receive buffer elements (handle,
significant only at root) (IN)

INTEGER root The rank of the receiving process (IN)

INTEGER comm The communicator (handle) (IN)

INTEGER ierror The Fortran return code

CALL MPI_GATHERV(sendbuf, sendcount, sendtype,
recvbuf, recvcounts, displs, recvtype, root, comm, ierror)

Usage
Frequently Used MPI Subroutines Illustrated 171

Description This routine collects individual messages from each process
in comm at the root process and stores them in rank order.
With recvcounts as an array, messages can have varying
sizes, and displs allows you the flexibility of where the data
is placed on the root. The type signature of sendcount,
sendtype on process i must be equal to the type signature of
recvcounts(i), recvtype at the root. This means the amount of
data sent must be equal to the amount of data received,
pairwise between each process and the root. Distinct type
maps between sender and receiver are allowed. All
processes in comm need to call this routine.

Figure 131. MPI_GATHERV

Sample program

PROGRAM gatherv
INCLUDE ’mpif.h’
INTEGER isend(3), irecv(6)
INTEGER ircnt(0:2), idisp(0:2)
DATA ircnt/1,2,3/ idisp/0,1,3/
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
DO i=1,myrank+1

isend(i) = myrank + 1
ENDDO
iscnt = myrank + 1
CALL MPI_GATHERV(isend, iscnt, MPI_INTEGER,

& irecv, ircnt, idisp, MPI_INTEGER,
& 0, MPI_COMM_WORLD, ierr)
172 RS/6000 SP: Practical MPI Programming

IF (myrank==0) THEN
PRINT *,’irecv =’,irecv

ENDIF
CALL MPI_FINALIZE(ierr)
END

Sample execution

$ a.out -procs 3
0: irecv = 1 2 2 3 3 3

B.2.7 MPI_ALLGATHER

Purpose Gathers individual messages from each process in comm and
distributes the resulting message to each process.

Parameters

(CHOICE) sendbuf The starting address of the send buffer (IN)

INTEGER sendcount The number of elements in the send buffer (IN)

INTEGER sendtype The data type of the send buffer elements (handle) (IN)

(CHOICE) recvbuf The address of the receive buffer. sendbuf and recvbuf
cannot overlap in memory. (OUT)

INTEGER recvcount The number of elements received from any process (IN)

INTEGER recvtype The data type of the receive buffer elements (handle) (IN)

INTEGER comm The communicator (handle) (IN)

INTEGER ierror The Fortran return code

Description MPI_ALLGATHER is similar to MPI_GATHER except that
all processes receive the result instead of just the root. The
amount of data gathered from each process is the same.
The block of data sent from process j is received by every
process and placed in the j-th block of the buffer recvbuf.
The type signature associated with sendcount, sendtype at
a process must be equal to the type signature associated
with recvcount, recvtype at any other process. All
processes in comm need to call this routine.

CALL MPI_ALLGATHER(sendbuf, sendcount, sendtype,
recvbuf, recvcount, recvtype, comm, ierror)

Usage
Frequently Used MPI Subroutines Illustrated 173

Figure 132. MPI_ALLGATHER

Sample program

PROGRAM allgather
INCLUDE ’mpif.h’
INTEGER irecv(3)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
isend = myrank + 1
CALL MPI_ALLGATHER(isend, 1, MPI_INTEGER,

& irecv, 1, MPI_INTEGER,
& MPI_COMM_WORLD, ierr)
PRINT *,’irecv =’,irecv
CALL MPI_FINALIZE(ierr)
END

Sample execution

$ a.out -procs 3
0: irecv = 1 2 3
1: irecv = 1 2 3
2: irecv = 1 2 3

B.2.8 MPI_ALLGATHERV

Purpose Collects individual messages from each process in comm and
distributes the resulting message to all processes. Messages can
have different sizes and displacements.

Parameters

(CHOICE) sendbuf The starting address of the send buffer (IN)

CALL MPI_ALLGATHERV(sendbuf, sendcount, sendtype,
recvbuf, recvcounts, displs, recvtype, comm, ierror)

Usage
174 RS/6000 SP: Practical MPI Programming

INTEGER sendcount The number of elements in the send buffer (IN)

INTEGER sendtype The data type of the send buffer elements (handle) (IN)

(CHOICE) recvbuf The address of the receive buffer. sendbuf and recvbuf
cannot overlap in memory (OUT)

INTEGER recvcounts(*)
Integer array (of length group size) that contains the
number of elements received from each process (IN)

INTEGER displs(*) Integer array (of length group size). Entry i specifies the
displacement (relative to recvbuf) at which to place the
incoming data from process i (IN)

INTEGER recvtype The data type of the receive buffer elements (handle) (IN)

INTEGER comm The communicator (handle) (IN)

INTEGER ierror The Fortran return code

Description This routine collects individual messages from each
process in comm and distributes the resulting message to
all processes. Messages can have different sizes and
displacements. The block of data sent from process j is
recvcounts(j) elements long, and is received by every
process and placed in recvbuf at offset displs(j). The type
signature associated with sendcount, sendtype at process j
must be equal to the type signature of recvcounts(j),
recvtype at any other process. All processes in comm need
to call this routine.

Figure 133. MPI_ALLGATHERV

Sample program

PROGRAM allgatherv
Frequently Used MPI Subroutines Illustrated 175

INCLUDE ’mpif.h’
INTEGER isend(3), irecv(6)
INTEGER ircnt(0:2), idisp(0:2)
DATA ircnt/1,2,3/ idisp/0,1,3/
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
DO i=1,myrank+1

isend(i) = myrank + 1
ENDDO
iscnt = myrank + 1
CALL MPI_ALLGATHERV(isend, iscnt, MPI_INTEGER,

& irecv, ircnt, idisp, MPI_INTEGER,
& MPI_COMM_WORLD, ierr)
PRINT *,’irecv =’,irecv
CALL MPI_FINALIZE(ierr)
END

Sample execution

$ a.out -procs 3
0: irecv = 1 2 2 3 3 3
1: irecv = 1 2 2 3 3 3
2: irecv = 1 2 2 3 3 3

B.2.9 MPI_ALLTOALL

Purpose Sends a distinct message from each process to every other
process.

Parameters

(CHOICE) sendbuf The starting address of the send buffer (IN)

INTEGER sendcount The number of elements sent to each process (IN)

INTEGER sendtype The data type of the send buffer elements (handle) (IN)

(CHOICE) recvbuf The address of the receive buffer. sendbuf and recvbuf
cannot overlap in memory. (OUT)

INTEGER recvcount The number of elements received from any process (IN)

INTEGER recvtype The data type of the receive buffer elements (handle) (IN)

INTEGER comm The communicator (handle) (IN)

INTEGER ierror The Fortran return code

Description This routine sends a distinct message from each process
to every process. The j-th block of data sent from process i
is received by process j and placed in the i-th block of the
buffer recvbuf. The type signature associated with
sendcount, sendtype, at a process must be equal to the
type signature associated with recvcount, recvtype at any
other process. This means the amount of data sent must

CALL MPI_ALLTOALL(sendbuf, sendcount, sendtype,
recvbuf, recvcount, recvtype, comm, ierror)

Usage
176 RS/6000 SP: Practical MPI Programming

be equal to the amount of data received, pairwise between
every pair of processes. The type maps can be different.
All arguments on all processes are significant. All
processes in comm need to call this routine.

Figure 134. MPI_ALLTOALL

Sample program

PROGRAM alltoall
INCLUDE ’mpif.h’
INTEGER isend(3), irecv(3)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
DO i=1,nprocs

isend(i) = i + nprocs * myrank
ENDDO
PRINT *,’isend =’,isend
CALL MP_FLUSH(1) ! for flushing stdout
CALL MPI_ALLTOALL(isend, 1, MPI_INTEGER,

& irecv, 1, MPI_INTEGER,
& MPI_COMM_WORLD, ierr)
PRINT *,’irecv =’,irecv
CALL MPI_FINALIZE(ierr)
END

Sample execution

$ a.out -procs 3
0: isend = 1 2 3
1: isend = 4 5 6
2: isend = 7 8 9
0: irecv = 1 4 7
1: irecv = 2 5 8
2: irecv = 3 6 9
Frequently Used MPI Subroutines Illustrated 177

B.2.10 MPI_ALLTOALLV

Purpose Sends a distinct message from each process to every process.
Messages can have different sizes and displacements.

Parameters

(CHOICE) sendbuf The starting address of the send buffer (IN)

INTEGER sendcounts(*)
Integer array (of length group size) specifying the number
of elements to send to each process (IN)

INTEGER sdispls(*) Integer array (of length group size). Entry j specifies the
displacement relative to sendbuf from which to take the
outgoing data destined for process j (IN)

INTEGER sendtype The data type of the send buffer elements (handle) (IN)

(CHOICE) recvbuf The address of the receive buffer. sendbuf and recvbuf
cannot overlap in memory (OUT)

INTEGER recvcounts(*)
Integer array (of length group size) specifying the number
of elements to be received from each process (IN)

INTEGER rdispls(*) Integer array (of length group size). Entry i specifies the
displacement relative to recvbuf at which to place the
incoming data from process i. (IN)

INTEGER recvtype The data type of the receive buffer elements (handle) (IN)

INTEGER comm The communicator (handle) (IN)

INTEGER ierror The Fortran return code

Description This routine sends a distinct message from each process
to every process. Messages can have different sizes and
displacements. This routine is similar to MPI_ALLTOALL
with the following differences. MPI_ALLTOALLV allows you
the flexibility to specify the location of the data for the send
with sdispls and the location of where the data will be
placed on the receive with rdispls. The block of data sent
from process i is sendcounts(j) elements long, and is
received by process j and placed in recvbuf at offset
rdispls(i). These blocks do not have to be the same size.
The type signature associated with sendcount(j), sendtype
at process i must be equal to the type signature associated
with recvcounts(i), recvtype at process j. This means the
amount of data sent must be equal to the amount of data
received, pairwise between every pair of processes.
Distinct type maps between sender and receiver are
allowed. All arguments on all processes are significant. All
processes in comm need to call this routine.

CALL MPI_ALLTOALLV(sendbuf, sendcounts, sdispls, sendtype,
recvbuf, recvcounts, rdispls, recvtype, comm, ierror)

Usage
178 RS/6000 SP: Practical MPI Programming

Figure 135. MPI_ALLTOALLV

Sample program

PROGRAM alltoallv
INCLUDE ’mpif.h’
INTEGER isend(6), irecv(9)
INTEGER iscnt(0:2), isdsp(0:2), ircnt(0:2), irdsp(0:2)
DATA isend/1,2,2,3,3,3/
DATA iscnt/1,2,3/ isdsp/0,1,3/
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
DO i=1,6

isend(i) = isend(i) + nprocs * myrank
ENDDO
DO i=0,nprocs-1

ircnt(i) = myrank + 1
irdsp(i) = i * (myrank + 1)

ENDDO
PRINT *,’isend =’,isend
CALL MP_FLUSH(1) ! for flushing stdout
CALL MPI_ALLTOALLV(isend, iscnt, isdsp, MPI_INTEGER,

& irecv, ircnt, irdsp, MPI_INTEGER,
& MPI_COMM_WORLD, ierr)
PRINT *,’irecv =’,irecv
CALL MPI_FINALIZE(ierr)
END

Sample execution

$ a.out -procs 3
0: isend = 1 2 2 3 3 3
1: isend = 4 5 5 6 6 6
Frequently Used MPI Subroutines Illustrated 179

2: isend = 7 8 8 9 9 9
0: irecv = 1 4 7 0 0 0 0 0 0
1: irecv = 2 2 5 5 8 8 0 0 0
2: irecv = 3 3 3 6 6 6 9 9 9

B.2.11 MPI_REDUCE

Purpose Applies a reduction operation to the vector sendbuf over the set
of processes specified by comm and places the result in recvbuf
on root.

Parameters

(CHOICE) sendbuf The address of the send buffer (IN)

(CHOICE) recvbuf The address of the receive buffer. sendbuf and recvbuf
cannot overlap in memory. (significant only at root) (OUT)

INTEGER count The number of elements in the send buffer (IN)

INTEGER datatype The data type of elements of the send buffer (handle) (IN)

INTEGER op The reduction operation (handle) (IN)

INTEGER root The rank of the root process (IN)

INTEGER comm The communicator (handle) (IN)

INTEGER ierror The Fortran return code

Description This routine applies a reduction operation to the vector
sendbuf over the set of processes specified by comm and
places the result in recvbuf on root. Both the input and
output buffers have the same number of elements with the
same type. The arguments sendbuf, count, and datatype
define the send or input buffer and recvbuf, count and
datatype define the output buffer. MPI_REDUCE is called
by all group members using the same arguments for count,
datatype, op, and root. If a sequence of elements is
provided to a process, then the reduce operation is
executed element-wise on each entry of the sequence.
Here’s an example. If the operation is MPI_MAX and the
send buffer contains two elements that are floating point
numbers (count = 2 and datatype = MPI_FLOAT), then
recvbuf(1) = global max(sendbuf(1)) and recvbuf(2) =
global max(sendbuf(2)). Users may define their own
operations or use the predefined operations provided by
MPI. User-defined operations can be overloaded to

CALL MPI_REDUCE(sendbuf, recvbuf, count, datatype, op, root, comm, ierror)

Usage
180 RS/6000 SP: Practical MPI Programming

operate on several data types, either basic or derived. All
processes in comm need to call this routine.

Table 11. Predefined Combinations of Operations and Data Types

Figure 136. MPI_REDUCE for Scalar Variables

Sample program

PROGRAM reduce
INCLUDE ’mpif.h’
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
isend = myrank + 1
CALL MPI_REDUCE(isend, irecv, 1, MPI_INTEGER,

& MPI_SUM, 0, MPI_COMM_WORLD, ierr)
IF (myrank==0) THEN

PRINT *,’irecv =’,irecv
ENDIF
CALL MPI_FINALIZE(ierr)
END

Sample execution

$ a.out -procs 3
0: irecv = 6

Operation Data Type

MPI_SUM, MPI_PROD MPI_INTEGER, MPI_REAL,
MPI_DOUBLE_PRECISION, MPI_COMPLEX

MPI_MAX, MPI_MIN MPI_INTEGER, MPI_REAL,
MPI_DOUBLE_PRECISION

MPI_MAXLOC, MPI_MINLOC MPI_2INTEGER, MPI_2REAL,
MPI_2DOUBLE_PRECISION

MPI_LAND, MPI_LOR, MPI_LXOR MPI_LOGICAL

MPI_BAND, MPI_BOR,
MPI_BXOR

MPI_INTEGER, MPI_BYTE
Frequently Used MPI Subroutines Illustrated 181

Figure 137. MPI_REDUCE for Arrays

Figure 137 shows how MPI_REDUCE acts on arrays.

B.2.12 MPI_ALLREDUCE

Purpose Applies a reduction operation to the vector sendbuf over the set
of processes specified by comm and places the result in recvbuf
on all of the processes in comm.

Parameters

(CHOICE) sendbuf The starting address of the send buffer (IN)

(CHOICE) recvbuf The starting address of the receive buffer. sendbuf and
recvbuf cannot overlap in memory (OUT)

INTEGER count The number of elements in the send buffer (IN)

INTEGER datatype The data type of elements of the send buffer (handle) (IN)

INTEGER op The reduction operation (handle) (IN)

INTEGER comm The communicator (handle) (IN)

INTEGER ierror The Fortran return code

Description This routine applies a reduction operation to the vector
sendbuf over the set of processes specified by comm and
places the result in recvbuf on all of the processes. This
routine is similar to MPI_REDUCE, except the result is
returned to the receive buffer of all the group members. All
processes in comm need to call this routine.

For predefined combinations of operations and data types, see Table 11 on page
181.

CALL MPI_ALLREDUCE(sendbuf, recvbuf, count, datatype, op, comm, ierror)

Usage
182 RS/6000 SP: Practical MPI Programming

Figure 138. MPI_ALLREDUCE

Sample program

PROGRAM allreduce
INCLUDE ’mpif.h’
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
isend = myrank + 1
CALL MPI_ALLREDUCE(isend, irecv, 1, MPI_INTEGER,

& MPI_SUM, MPI_COMM_WORLD, ierr)
PRINT *,’irecv =’,irecv
CALL MPI_FINALIZE(ierr)
END

Sample execution

$ a.out -procs 3
0: irecv = 6
1: irecv = 6
2: irecv = 6

B.2.13 MPI_SCAN

Purpose Performs a parallel prefix reduction on data distributed across a
group.

Parameters

(CHOICE) sendbuf The starting address of the send buffer (IN)

(CHOICE) recvbuf The starting address of the receive buffer. sendbuf and
recvbuf cannot overlap in memory (OUT)

INTEGER count The number of elements in sendbuf (IN)

INTEGER datatype The data type of elements of sendbuf (handle) (IN)

INTEGER op The reduction operation (handle) (IN)

CALL MPI_SCAN(sendbuf, recvbuf, count, datatype, op, comm, ierror)

Usage
Frequently Used MPI Subroutines Illustrated 183

INTEGER comm The communicator (handle) (IN)

INTEGER ierror The Fortran return code

Description This routine is used to perform a prefix reduction on data
distributed across the group. The operation returns, in the
receive buffer of the process with rank i, the reduction of the
values in the send buffers of processes with ranks 0..i
(inclusive). The type of operations supported, their semantics,
and the restrictions on send and receive buffers are the same
as for MPI_REDUCE. All processes in comm need to call this
routine.

For predefined combinations of operations and data types, see Table 11 on page
181.

Figure 139. MPI_SCAN

Sample program

PROGRAM scan
INCLUDE ’mpif.h’
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
isend = myrank + 1
CALL MPI_SCAN(isend, irecv, 1, MPI_INTEGER,

& MPI_SUM, MPI_COMM_WORLD, ierr)
PRINT *,’irecv =’,irecv
CALL MPI_FINALIZE(ierr)
END

Sample execution

$ a.out -procs 3
0: irecv = 1
1: irecv = 3
2: irecv = 6

B.2.14 MPI_REDUCE_SCATTER

Purpose Applies a reduction operation to the vector sendbuf over the set
of processes specified by comm and scatters the result according
to the values in recvcounts.
184 RS/6000 SP: Practical MPI Programming

Parameters

(CHOICE) sendbuf The starting address of the send buffer (IN)

(CHOICE) recvbuf The starting address of the receive buffer. sendbuf and
recvbuf cannot overlap in memory. (OUT)

INTEGER recvcounts(*)
Integer array specifying the number of elements in result
distributed to each process. Must be identical on all calling
processes. (IN)

INTEGER datatype The data type of elements of the input buffer (handle) (IN)

INTEGER op The reduction operation (handle) (IN)

INTEGER comm The communicator (handle) (IN)

INTEGER ierror The Fortran return code

Description MPI_REDUCE_SCATTER first performs an element-wise
reduction on vector of count = recvcounts(i) elements in
the send buffer defined by sendbuf, count and datatype. Next,
the resulting vector is split into n disjoint segments, where n is
the number of members in the group. Segment i contains
recvcounts(i) elements. The ith segment is sent to process i
and stored in the receive buffer defined by recvbuf,
recvcounts(i) and datatype. MPI_REDUCE_SCATTER is
functionally equivalent to MPI_REDUCE with count equal to
the sum of recvcounts(i) followed by MPI_SCATTERV with
sendcounts equal to recvcounts. All processes in comm need
to call this routine.

For predefined combinations of operations and data types, see Table 11 on page
181.

CALL MPI_REDUCE_SCATTER(sendbuf, recvbuf, recvcounts, datatype, op, comm,
ierror)

Usage

Σi
Frequently Used MPI Subroutines Illustrated 185

Figure 140. MPI_REDUCE_SCATTER

Sample program

PROGRAM reduce_scatter
INCLUDE ’mpif.h’
INTEGER isend(6), irecv(3)
INTEGER ircnt(0:2)
DATA ircnt/1,2,3/
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
DO i=1,6

isend(i) = i + myrank * 10
ENDDO
CALL MPI_REDUCE_SCATTER(isend, irecv, ircnt, MPI_INTEGER,

& MPI_SUM, MPI_COMM_WORLD, ierr)
PRINT *,’irecv =’,irecv
CALL MPI_FINALIZE(ierr)
END
186 RS/6000 SP: Practical MPI Programming

Sample execution

$ a.out -procs 3
0: irecv = 33 0 0
1: irecv = 36 39 0
2: irecv = 42 45 48

B.2.15 MPI_OP_CREATE

Purpose Binds a user-defined reduction operation to an op handle.

Parameters

EXTERNAL func The user-defined reduction function (IN)

INTEGER commute .TRUE. if commutative; otherwise it’s .FALSE. (IN)

INTEGER op The reduction operation (handle) (OUT)

INTEGER ierror The Fortran return code

Description This routine binds a user-defined reduction operation to an
op handle which you can then use in MPI_REDUCE,
MPI_ALLREDUCE, MPI_REDUCE_SCATTER and
MPI_SCAN and their nonblocking equivalents. The
user-defined operation is assumed to be associative. If
commute = .TRUE., then the operation must be both
commutative and associative. If commute = .FALSE., then
the order of the operation is fixed. The order is defined in
ascending process rank order and begins with process
zero. func is a user-defined function. It must have the
following four arguments: invec, inoutvec, len, and
datatype.

SUBROUTINE func(invec(*), inoutvec(*), len, type)

<type> invec(len), inoutvec(len)

INTEGER len, type

Sample programs 1 and 2 create operations my_sum and my_maxloc,
respectively. The operation my_sum is for adding double compex numbers and
the operation my_maxloc is for finding and locating the maximum element of a
two-dimensional integer array. Both operations are not defined by default. (See
Table 11 on page 181.)

Table 12. Adding User-Defined Operations

Operation Data Type

my_sum MPI_DOUBLE_COMPLEX

my_maxloc MPI_INTEGER x 3

CALL MPI_OP_CREATE(func, commute, op, ierror)

Usage
Frequently Used MPI Subroutines Illustrated 187

Figure 141. MPI_OP_CREATE

Sample program 1

This program defines an operation my_sum that adds double-precision
complex numbers, which is used by MPI_REDUCE as shown in Figure 141.

PROGRAM op_create
INCLUDE ’mpif.h’
EXTERNAL my_sum
COMPLEX*16 c(2), csum(2)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
CALL MPI_OP_CREATE(my_sum, .TRUE., isum, ierr)
c(1) = (myrank * 10 + 1, myrank * 10 + 1)
c(2) = (myrank * 10 + 2, myrank * 10 + 2)
CALL MPI_REDUCE(c, csum, 2, MPI_DOUBLE_COMPLEX, isum,

& 0, MPI_COMM_WORLD, ierr)
IF (myrank==0) THEN

PRINT *,’csum =’,csum
ENDIF
CALL MPI_FINALIZE(ierr)
END

SUBROUTINE my_sum(cin, cinout, len, itype)
COMPLEX*16 cin(*), cinout(*)
DO i=1,len

cinout(i) = cinout(i) + cin(i)
ENDDO
END

Sample execution 1

$ a.out -procs 3
0: csum = (33.0000000000000000,33.0000000000000000)

(36.0000000000000000,36.0000000000000000)
188 RS/6000 SP: Practical MPI Programming

Sample program 2

This program defines an operation my_maxloc, which is a generalization of
MPI_MAXLOC to two-dimensional arrays.

PROGRAM op_create2
INCLUDE ’mpif.h’
EXTERNAL my_maxloc
INTEGER m(100,100), n(3), nn(3)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
CALL MPI_OP_CREATE(my_maxloc, .TRUE., imaxloc, ierr)
Each process finds local maxima, imax,
and its location, (iloc,jloc).
n(1) = imax
n(2) = iloc
n(3) = jloc
CALL MPI_REDUCE(n, nn, 3, MPI_INTEGER, imaxloc,

& 0, MPI_COMM_WORLD, ierr)
IF (myrank==0) THEN

PRINT *, ’Max =’, nn(1), ’Location =’, nn(2), nn(3)
ENDIF
CALL MPI_FINALIZE(ierr)
END

SUBROUTINE my_maxloc(in, inout, len, itype)
INTEGER in(*), inout(*)
IF (in(1) > inout(1)) THEN

inout(1) = in(1)
inout(2) = in(2)
inout(3) = in(3)

ENDIF
END

B.2.16 MPI_BARRIER

Purpose Blocks each process in comm until all processes have called it.

Parameters

INTEGER comm The communicator (handle) (IN)

INTEGER ierror The Fortran return code

Description This routine blocks until all processes have called it.
Processes cannot exit the operation until all group members
have entered. All processes in comm need to call this routine.

B.3 Point-to-Point Communication Subroutines

The following sections introduce several point-to-point communication
subroutines.

CALL MPI_BARRIER(comm, ierror)

Usage
Frequently Used MPI Subroutines Illustrated 189

B.3.1 MPI_SEND

Purpose Performs a blocking standard mode send operation.

Parameters

(CHOICE) buf The initial address of the send buffer (IN)

INTEGER count The number of elements in the send buffer (IN)

INTEGER datatype The data type of each send buffer element (handle) (IN)

INTEGER dest The rank of the destination process in comm or
MPI_PROC_NULL (IN)

INTEGER tag The message tag. You can choose any integer in the range
0..232-1 (IN)

INTEGER comm The communicator (handle) (IN)

INTEGER ierror The Fortran return code

Description This routine is a blocking standard mode send. MPI_SEND
causes count elements of type datatype to be sent from
buf to the process specified by dest. dest is a process rank
which can be any value from 0 to n-1, where n is the
number of processes in comm. The message sent by
MPI_SEND can be received by either MPI_RECV or
MPI_IRECV.

CALL MPI_SEND(buf, count, datatype, dest, tag, comm, ierror)

Usage
190 RS/6000 SP: Practical MPI Programming

Figure 142. MPI_SEND and MPI_RECV

Sample program

This program sends isbuf of process 0 to irbuf of process 1.

PROGRAM send
INCLUDE ’mpif.h’
INTEGER istatus(MPI_STATUS_SIZE)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
itag = 1
IF (myrank==0) THEN

isbuf = 9
CALL MPI_SEND(isbuf, 1, MPI_INTEGER, 1, itag,

& MPI_COMM_WORLD, ierr)
ELSEIF (myrank==1) THEN

CALL MPI_RECV(irbuf, 1, MPI_INTEGER, 0, itag,
& MPI_COMM_WORLD, istatus, ierr)

PRINT *,’irbuf =’,irbuf
ENDIF
CALL MPI_FINALIZE(ierr)
END
Frequently Used MPI Subroutines Illustrated 191

Sample execution

$ a.out -procs 2
1: irbuf = 9

B.3.2 MPI_RECV

Purpose Performs a blocking receive operation.

Parameters

(CHOICE) buf The initial address of the receive buffer (OUT)

INTEGER count The number of elements to be received (IN)

INTEGER datatype The data type of each receive buffer element (handle) (IN)

INTEGER source The rank of the source process in comm,
MPI_ANY_SOURCE, or MPI_PROC_NULL (IN)

INTEGER tag The message tag or MPI_ANY_TAG (IN)

INTEGER comm The communicator (handle) (IN)

INTEGER status(MPI_STATUS_SIZE)
The status object (OUT)

INTEGER ierror The Fortran return code

Description MPI_RECV is a blocking receive. The receive buffer is
storage containing room for count consecutive elements of
the type specified by datatype, starting at address buf. The
message received must be less than or equal to the length
of the receive buffer. If all incoming messages do not fit
without truncation, an overflow error occurs. If a message
arrives that is shorter than the receive buffer, then only
those locations corresponding to the actual message are
changed. MPI_RECV can receive a message sent by
either MPI_SEND or MPI_ISEND.

Sample program and execution

See the program in B.3.1, “MPI_SEND” on page 190.

B.3.3 MPI_ISEND

Purpose Performs a nonblocking standard mode send operation.

Parameters

(CHOICE) buf The initial address of the send buffer (IN)

CALL MPI_RECV(buf, count, datatype, source, tag, comm, status, ierror)

Usage

CALL MPI_ISEND(buf, count, datatype, dest, tag, comm, request, ierror)

Usage
192 RS/6000 SP: Practical MPI Programming

INTEGER count The number of elements in the send buffer (IN)

INTEGER datatype The data type of each send buffer element (handle) (IN)

INTEGER dest The rank of the destination process in comm or
MPI_PROC_NULL (IN)

INTEGER tag The message tag. You can choose any integer in the range
0..232-1. (IN)

INTEGER comm The communicator (handle) (IN)

INTEGER request The communication request (handle) (OUT)

INTEGER ierror The Fortran return code

Description This routine starts a nonblocking standard mode send. The
send buffer may not be modified until the request has been
completed by MPI_WAIT, MPI_TEST, or one of the other
MPI wait or test functions. The message sent by
MPI_ISEND can be received by either MPI_RECV or
MPI_IRECV. See B.3.1, “MPI_SEND” on page 190 for
additional information.
Frequently Used MPI Subroutines Illustrated 193

Figure 143. MPI_ISEND and MPI_IRECV

Sample program

This program sends isbuf of process 0 to irbuf of process 1 in non-blocking
manner.

PROGRAM isend
INCLUDE ’mpif.h’
INTEGER istatus(MPI_STATUS_SIZE)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
itag = 1
IF (myrank==0) THEN

isbuf = 9
CALL MPI_ISEND(isbuf, 1, MPI_INTEGER, 1, itag,

& MPI_COMM_WORLD, ireq, ierr)
CALL MPI_WAIT(ireq, istatus, ierr)
194 RS/6000 SP: Practical MPI Programming

ELSEIF (myrank==1) THEN
CALL MPI_IRECV(irbuf, 1, MPI_INTEGER, 0, itag,

& MPI_COMM_WORLD, ireq, ierr)
CALL MPI_WAIT(ireq, istatus, ierr)
PRINT *,’irbuf =’,irbuf

ENDIF
CALL MPI_FINALIZE(ierr)
END

Sample execution

$ a.out -procs 2
1: irbuf = 9

B.3.4 MPI_IRECV

Purpose Performs a nonblocking receive operation.

Parameters

(CHOICE) buf The initial address of the receive buffer (OUT)

INTEGER count The number of elements in the receive buffer (IN)

INTEGER datatype The data type of each receive buffer element (handle) (IN)

INTEGER source The rank of source, MPI_ANY_SOURCE, or
MPI_PROC_NULL (IN)

INTEGER tag The message tag or MPI_ANY_TAG (IN)

INTEGER comm The communicator (handle) (IN)

INTEGER request The communication request (handle) (OUT)

INTEGER ierror The Fortran return code

Description This routine starts a nonblocking receive and returns a handle
to a request object. You can later use the request to query the
status of the communication or wait for it to complete. A
nonblocking receive call means the system may start writing
data into the receive buffer. Once the nonblocking receive
operation is called, do not access any part of the receive
buffer until the receive is complete. The message received
must be less than or equal to the length of the receive buffer.
If all incoming messages do not fit without truncation, an
overflow error occurs. If a message arrives that is shorter
than the receive buffer, then only those locations
corresponding to the actual message are changed. If an
overflow occurs, it is flagged at the MPI_WAIT or MPI_TEST.
MPI_IRECV can receive a message sent by either
MPI_SEND or MPI_ISEND. See B.3.2, “MPI_RECV” on page
192 for additional information.

Sample program and execution

See the program in B.3.3, “MPI_ISEND” on page 192.

CALL MPI_IRECV(buf, count, datatype, source, tag, comm, request, ierror)

Usage
Frequently Used MPI Subroutines Illustrated 195

B.3.5 MPI_WAIT

Purpose Waits for a nonblocking operation to complete.

Parameters

INTEGER request The request to wait for (handle) (INOUT)

INTEGER status(MPI_STATUS_SIZE)
The status object (OUT)

INTEGER ierror The Fortran return code

Description MPI_WAIT returns after the operation identified by request
completes. If the object associated with request was
created by a nonblocking operation, the object is
deallocated and request is set to MPI_REQUEST_NULL.
MPI_WAIT is a non-local operation. You can call
MPI_WAIT with a null or inactive request argument. The
operation returns immediately. The status argument
returns tag = MPI_ANY_TAG, source =
MPI_ANY_SOURCE. The status argument is also
internally configured so that calls to MPI_GET_COUNT
and MPI_GET_ELEMENTS return count = 0. (This is
called an empty status.) Information on the completed
operation is found in status. You can query the status
object for a send or receive operation with a call to
MPI_TEST_CANCELLED. For receive operations, you can
also retrieve information from status with
MPI_GET_COUNT and MPI_GET_ELEMENTS. If
wildcards were used by the receive for either the source or
tag, the actual source and tag can be retrieved by:

source = status(MPI_SOURCE)

tag = status(MPI_TAG)

Sample program and execution

See the program in B.3.6, “MPI_GET_COUNT” on page 196.

B.3.6 MPI_GET_COUNT

Purpose Returns the number of elements in a message.

Parameters

INTEGER status(MPI_STATUS_SIZE)
The status object (IN)

CALL MPI_WAIT(request, status, ierror)

Usage

CALL MPI_GET_COUNT(status, datatype, count, ierror)

Usage
196 RS/6000 SP: Practical MPI Programming

INTEGER datatype The data type of each message element (handle) (IN)

INTEGER count The number of elements (OUT)

INTEGER ierror The Fortran return code

Description This subroutine returns the number of elements in a
message. The datatype argument and the argument
provided by the call that set the status variable should
match. When one of the MPI wait or test calls returns
status for a non-blocking operation request and the
corresponding blocking operation does not provide a
status argument, the status from this wait/test does not
contain meaningful source, tag or message size
information.

Sample program

Point-to-point communication between processes 0 and 1. After the receiving
process, source, tag, and number of elements sent are examined.

PROGRAM get_count
INCLUDE ’mpif.h’
INTEGER istatus(MPI_STATUS_SIZE)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
itag = 1
IF (myrank==0) THEN

isbuf = 9
CALL MPI_ISEND(isbuf, 1, MPI_INTEGER, 1, itag,

& MPI_COMM_WORLD, ireq, ierr)
ELSEIF (myrank==1) THEN

CALL MPI_IRECV(irbuf, 1, MPI_INTEGER, 0, itag,
& MPI_COMM_WORLD, ireq, ierr)

CALL MPI_WAIT(ireq, istatus, ierr)
CALL MPI_GET_COUNT(istatus, MPI_INTEGER, icount, ierr)
PRINT *,’irbuf =’,irbuf
PRINT *,’source =’,istatus(MPI_SOURCE)
PRINT *,’tag =’,istatus(MPI_TAG)
PRINT *,’count =’,icount

ENDIF
CALL MPI_FINALIZE(ierr)
END

Sample execution

$ a.out -procs 2
1: irbuf = 9
1: source = 0
1: tag = 1
1: count = 1

B.4 Derived Data Types

The following sections introduce several derived data types.
Frequently Used MPI Subroutines Illustrated 197

B.4.1 MPI_TYPE_CONTIGUOUS

Purpose Returns a new data type that represents the concatenation of
count instances of oldtype.

Parameters

INTEGER count The replication count (IN)

INTEGER oldtype The old data type (handle) (IN)

INTEGER newtype The new data type (handle) (OUT)

INTEGER ierror The Fortran return code

Description This routine returns a new data type that represents the
concatenation of count instances of oldtype.
MPI_TYPE_CONTIGUOUS allows replication of a data
type into contiguous locations. newtype must be
committed using MPI_TYPE_COMMIT before being used
for communication.

Figure 144. MPI_TYPE_CONTIGUOUS

Sample program

This program defines a data type representing three contiguous integers.

PROGRAM type_contiguous
INCLUDE ’mpif.h’
INTEGER ibuf(20)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
IF (myrank==0) THEN

DO i=1,20
ibuf(i) = i

ENDDO
ENDIF
CALL MPI_TYPE_CONTIGUOUS(3, MPI_INTEGER, inewtype, ierr)
CALL MPI_TYPE_COMMIT(inewtype, ierr)
CALL MPI_BCAST(ibuf, 3, inewtype, 0, MPI_COMM_WORLD, ierr)
PRINT *,’ibuf =’,ibuf
CALL MPI_FINALIZE(ierr)
END

Sample execution

$ a.out -procs 2
0: ibuf = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1: ibuf = 1 2 3 4 5 6 7 8 9 0 0 0 0 0 0 0 0 0 0 0

CALL MPI_TYPE_CONTIGUOUS(count, oldtype, newtype, ierror)

Usage
198 RS/6000 SP: Practical MPI Programming

B.4.2 MPI_TYPE_VECTOR

Purpose Returns a new data type that represents equally spaced blocks.
The spacing between the start of each block is given in units of
extent (oldtype).

Parameters

INTEGER count The number of blocks (IN)

INTEGER blocklength
The number of oldtype instances in each block (IN)

INTEGER stride The number of units between the start of each block (IN)

INTEGER oldtype The old data type (handle) (IN)

INTEGER newtype The new data type (handle) (OUT)

INTEGER ierror The Fortran return code

Description This function returns a new data type that represents count
equally spaced blocks. Each block is a a concatenation of
blocklength instances of oldtype. The origins of the blocks are
spaced stride units apart where the counting unit is
extent(oldtype). That is, from one origin to the next in bytes =
stride * extent (oldtype). newtype must be committed using
MPI_TYPE_COMMIT before being used for communication.

Figure 145. MPI_TYPE_VECTOR

Sample program

This program defines a data type representing eight integers with gaps (see
Figure 145).

PROGRAM type_vector
INCLUDE ’mpif.h’
INTEGER ibuf(20)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
IF (myrank==0) THEN

DO i=1,20
ibuf(i) = i

ENDDO
ENDIF
CALL MPI_TYPE_VECTOR(4, 2, 3, MPI_INTEGER, inewtype, ierr)
CALL MPI_TYPE_COMMIT(inewtype, ierr)

CALL MPI_TYPE_VECTOR(count, blocklength, stride, oldtype, newtype, ierror)

Usage
Frequently Used MPI Subroutines Illustrated 199

CALL MPI_BCAST(ibuf, 1, inewtype, 0, MPI_COMM_WORLD, ierr)
PRINT *,’ibuf =’,ibuf
CALL MPI_FINALIZE(ierr)
END

Sample execution

$ a.out -procs 2
0: ibuf = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1: ibuf = 1 2 0 4 5 0 7 8 0 10 11 0 0 0 0 0 0 0 0 0

B.4.3 MPI_TYPE_HVECTOR

Purpose Returns a new data type that represents equally-spaced blocks.
The spacing between the start of each block is given in bytes.

Parameters

INTEGER count The number of blocks (IN)

INTEGER blocklength
The number of oldtype instances in each block (IN)

INTEGER stride An integer specifying the number of bytes between start of
each block. (IN)

INTEGER oldtype The old data type (handle) (IN)

INTEGER newtype The new data type (handle) (OUT)

INTEGER ierror The Fortran return code

Description This routine returns a new data type that represents count
equally spaced blocks. Each block is a concatenation of
blocklength instances of oldtype. The origins of the blocks
are spaced stride units apart where the counting unit is
one byte. newtype must be committed using
MPI_TYPE_COMMIT before being used for
communication.

Figure 146. MPI_TYPE_HVECTOR

Sample program

This program defines a data type representing eight integers with gaps (see
Figure 146).

PROGRAM type_hvector
INCLUDE ’mpif.h’
INTEGER ibuf(20)

CALL MPI_TYPE_HVECTOR(count, blocklength, stride, oldtype, newtype, ierror)

Usage
200 RS/6000 SP: Practical MPI Programming

CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
IF (myrank==0) THEN

DO i=1,20
ibuf(i) = i

ENDDO
ENDIF
CALL MPI_TYPE_HVECTOR(4, 2, 3*4, MPI_INTEGER,

& inewtype, ierr)
CALL MPI_TYPE_COMMIT(inewtype, ierr)
CALL MPI_BCAST(ibuf, 1, inewtype, 0, MPI_COMM_WORLD, ierr)
PRINT *,’ibuf =’,ibuf
CALL MPI_FINALIZE(ierr)
END

Sample execution

$ a.out -procs 2
0: ibuf = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1: ibuf = 1 2 0 4 5 0 7 8 0 10 11 0 0 0 0 0 0 0 0 0

B.4.4 MPI_TYPE_STRUCT

Purpose Returns a new data type that represents count blocks. Each is
defined by an entry in array_of_blocklengths,
array_of_displacements and array_of_types. Displacements are
expressed in bytes.

Parameters

INTEGER count An integer specifying the number of blocks. It is also the
number of entries in arrays array_of_types,
array_of_displacements and array_of_blocklengths. (IN)

INTEGER array_of_blocklengths(*)
The number of elements in each block (array of integer). That
is, array_of_blocklengths(i) specifies the number of instances
of type array_of_types(i) in block(i). (IN)

INTEGER array_of_displacements(*)
The byte displacement of each block (array of integer) (IN)

INTEGER array_of_types(*)
The data type comprising each block. That is, block(i) is made
of a concatenation of type array_of_types(i). (array of handles
to data type objects) (IN)

INTEGER newtype The new data type (handle) (OUT)

INTEGER ierror The Fortran return code

Description This routine returns a new data type that represents count
blocks. Each is defined by an entry in array_of_blocklengths,
array_of_displacements and array_of_types. Displacements

CALL MPI_TYPE_STRUCT(count, array_of_blocklengths, array_of_displacements,
array_of_types, newtype, ierror)

Usage
Frequently Used MPI Subroutines Illustrated 201

are expressed in bytes. MPI_TYPE_STRUCT is the most
general type constructor. It allows each block to consist of
replications of different data types. This is the only
constructor which allows MPI pseudo types MPI_LB and
MPI_UB. Without these pseudo types, the extent of a data
type is the range from the first byte to the last byte rounded
up as needed to meet boundary requirements. For example, if
a type is made of an integer followed by 2 characters, it will
still have an extent of 8 because it is padded to meet the
boundary constraints of an int. This is intended to match the
behavior of a compiler defining an array of such structures.
Because there may be cases in which this default behavior is
not correct, MPI provides a means to set explicit upper and
lower bounds which may not be directly related to the lowest
and highest displacement data type. When the pseudo type
MPI_UB is used, the upper bound will be the value specified
as the displacement of the MPI_UB block. No rounding for
alignment is done. MPI_LB can be used to set an explicit
lower bound but its use does not suppress rounding. When
MPI_UB is not used, the upper bound of the data type is
adjusted to make the extent a multiple of the type’s most
boundary constrained component. In order to define a data
type ending with one or more empty slots, add a trailing block
of length=1 and type=MPI_UB. For a data type beginning with
one or more empty slots, add an opening block of length=1
and type=MPI_LB. newtype must be committed using
MPI_TYPE_COMMIT before being used for communication.

Figure 147. MPI_TYPE_STRUCT

Sample program

This program defines two data types shown in Figure 147.

PROGRAM type_struct
INCLUDE ’mpif.h’
202 RS/6000 SP: Practical MPI Programming

INTEGER ibuf1(20), ibuf2(20)
INTEGER iblock(2), idisp(2), itype(2)
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
IF (myrank==0) THEN

DO i=1,20
ibuf1(i) = i
ibuf2(i) = i

ENDDO
ENDIF
iblock(1) = 3
iblock(2) = 2
idisp(1) = 0
idisp(2) = 5 * 4
itype(1) = MPI_INTEGER
itype(2) = MPI_INTEGER

CALL MPI_TYPE_STRUCT(2, iblock, idisp, itype,
& inewtype1, ierr)
CALL MPI_TYPE_COMMIT(inewtype1, ierr)
CALL MPI_BCAST(ibuf1, 2, inewtype1, 0, MPI_COMM_WORLD, ierr)
PRINT *,’Ex. 1:’,ibuf1
iblock(1) = 1
iblock(2) = 3
idisp(1) = 0
idisp(2) = 2 * 4
itype(1) = MPI_LB
itype(2) = MPI_INTEGER
CALL MPI_TYPE_STRUCT(2, iblock, idisp, itype,

& inewtype2, ierr)
CALL MPI_TYPE_COMMIT(inewtype2, ierr)
CALL MPI_BCAST(ibuf2, 2, inewtype2, 0, MPI_COMM_WORLD, ierr)
PRINT *,’Ex. 2:’,ibuf2
CALL MPI_FINALIZE(ierr)
END

Sample execution

$ a.out -procs 2
0: Ex. 1: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0: Ex. 2: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1: Ex. 1: 1 2 3 0 0 6 7 8 9 10 0 0 13 14 0 0 0 0 0 0
1: Ex. 2: 0 0 3 4 5 0 0 8 9 10 0 0 0 0 0 0 0 0 0 0

B.4.5 MPI_TYPE_COMMIT

Purpose Makes a data type ready for use in communication.

Parameters

INTEGER datatype The data type that is to be committed (handle) (INOUT)

INTEGER ierror The Fortran return code

CALL MPI_TYPE_COMMIT(datatype, ierror)

Usage
Frequently Used MPI Subroutines Illustrated 203

Description A data type object must be committed before you can use it in
communication. You can use an uncommitted data type as an
argument in data type constructors. This routine makes a data
type ready for use in communication. The data type is the
formal description of a communication buffer. It is not the
content of the buffer. Once the data type is committed it can
be repeatedly reused to communicate the changing contents
of a buffer or buffers with different starting addresses.

Sample program and execution

See the program in B.4.1, “MPI_TYPE_CONTIGUOUS” on page 198.

B.4.6 MPI_TYPE_EXTENT

Purpose Returns the extent of any defined data type.

Parameters

INTEGER datatype The data type (handle) (IN)

INTEGER extent The data type extent (integer) (OUT)

INTEGER ierror The Fortran return code

Description This routine returns the extent of a data type. The extent of
a data type is the span from the first byte to the last byte
occupied by entries in this data type and rounded up to
satisfy alignment requirements. Rounding for alignment is
not done when MPI_UB is used to define the data type.
Types defined with MPI_LB, MP_UB or with any type that
contains MPI_LB or MPI_UB may return an extent which is
not directly related to the layout of data in memory. Refer
to MPI_TYPE_STRUCT for more information on MPI_LB
and MPI_UB.

Sample program

PROGRAM type_extent
INCLUDE ’mpif.h’
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
CALL MPI_TYPE_EXTENT(MPI_INTEGER, iextent, ierr)
PRINT *,’iextent =’,iextent
CALL MPI_FINALIZE(ierr)
END

Sample execution

$ a.out -procs 1
0: iextent = 4

CALL MPI_TYPE_EXTENT(datatype, extent, ierror)

Usage
204 RS/6000 SP: Practical MPI Programming

B.5 Managing Groups

The following sections introduce several managing groups.

B.5.1 MPI_COMM_SPLIT

Purpose Splits a communicator into multiple communicators based on
color and key.

Parameters

INTEGER comm The communicator (handle) (IN)

INTEGER color An integer specifying control of subset assignment (IN)

INTEGER key An integer specifying control of rank assignment (IN)

INTEGER newcomm The new communicator (handle) (OUT)

INTEGER ierror The Fortran return code

Description MPI_COMM_SPLIT is a collective function that partitions
the group associated with comm into disjoint subgroups,
one for each value of color. Each subgroup contains all
processes of the same color. Within each subgroup, the
processes are ranked in the order defined by the value of
the argument key. Ties are broken according to their rank in
the old group. A new communicator is created for each
subgroup and returned in newcomm. If a process supplies
the color value MPI_UNDEFINED, newcomm returns
MPI_COMM_NULL. Even though this is a collective call,
each process is allowed to provide different values for color
and key. This call applies only to intracommunicators. The
value of color must be greater than or equal to zero. All
processes in comm need to call this routine.

Figure 148. MPI_COMM_SPLIT

CALL MPI_COMM_SPLIT(comm, color, key, newcomm, ierror)

Usage
Frequently Used MPI Subroutines Illustrated 205

Sample program

PROGRAM comm_split
INCLUDE ’mpif.h’
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
IF (myrank==0) THEN

icolor = 1
ikey = 2

ELSEIF (myrank==1) THEN
icolor = 1
ikey = 1

ELSEIF (myrank==2) THEN
icolor = 2
ikey = 1

ELSEIF (myrank==3) THEN
icolor = 2
ikey = 2

ENDIF
CALL MPI_COMM_SPLIT(MPI_COMM_WORLD, icolor, ikey,
& newcomm, ierr)
CALL MPI_COMM_SIZE(newcomm, newprocs, ierr)
CALL MPI_COMM_RANK(newcomm, newrank, ierr)
PRINT *,’newcomm =’, newcomm,

& ’newprocs =’,newprocs,
& ’newrank =’, newrank
CALL MPI_FINALIZE(ierr)
END

Sample execution

$ a.out -procs 4
0: newcomm = 3 newprocs = 2 newrank = 1
1: newcomm = 3 newprocs = 2 newrank = 0
2: newcomm = 3 newprocs = 2 newrank = 0
3: newcomm = 3 newprocs = 2 newrank = 1

In Figure 148 on page 205, ranks in MPI_COMM_WORLD are printed in italic,
and ranks in newcomm are in boldface.
206 RS/6000 SP: Practical MPI Programming

Appendix C. Special Notices

This publication is intended to help application designers and developers exploit
the parallel architecture of the RS/6000 SP. The information in this publication is
not intended as the specification of any programming interfaces that are provided
by IBM Parallel Environment for AIX (PE) and Parallel System Support Programs
(PSSP). See the PUBLICATIONS section of the IBM Programming
Announcement for PE and PSSP for more information about what publications
are considered to be product documentation.

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The information about non-IBM ("vendor")
products in this manual has been supplied by the vendor and IBM assumes no
responsibility for its accuracy or completeness. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed by
IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.

Any performance data contained in this document was determined in a controlled
environment, and therefore, the results that may be obtained in other operating
environments may vary significantly. Users of this document should verify the
applicable data for their specific environment.
© Copyright IBM Corp. 1999 207

This document contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples contain the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of including
these reference numbers is to alert IBM customers to specific information relative
to the implementation of the PTF when it becomes available to each customer
according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc. in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States
and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries. (For a complete list of
Intel trademarks see www.intel.com/tradmarx.htm)

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

SET and the SET logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service marks
of others.

AIX IBM
LoadLeveler RS/6000
SP
208 RS/6000 SP: Practical MPI Programming

Appendix D. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

D.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 211.

• RS/6000 Scientific and Technical Computing: POWER3 Introduction and
Tuning Guide, SG24-5155

• RS/6000 Systems Handbook, SG24-5120

D.2 Redbooks on CD-ROMs

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates and formats.

D.3 Other Publications

These publications are also relevant as further information sources:

• Parallel Environment for AIX: MPI Programming and Subroutine Reference
Version 2 Release 4, GC23-3894

• AIX Version 4 Optimization and Tuning Guide for FORTRAN, C, and C++,
SC09-1705

• Engineering and Scientific Subroutine Library for AIX Guide and Reference,
SA22-7272 (latest version available at
http://www.rs6000.ibm.com/resource/aix_resource/sp_books)

• Parallel Engineering and Scientific Subroutine Library for AIX Guide and
Reference, SA22-7273 (latest version available at
http://www.rs6000.ibm.com/resource/aix_resource/sp_books)

• Parallel Environment for AIX: Operation and Use, Volume 1: Using the Parallel
Operating Environment Version 2 Release 4, SC28-1979

• Parallel Environment for AIX: Operation and Use, Volume 2, SC28-1980

• IBM LoadLeveler for AIX Using and Administering Version 2 Release 1,
SA22-7311

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177
Networking and Systems Management Redbooks Collection SK2T-6022
Transaction Processing and Data Management Redbooks Collection SK2T-8038
Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
AS/400 Redbooks Collection SK2T-2849
Netfinity Hardware and Software Redbooks Collection SK2T-8046
RS/6000 Redbooks Collection (BkMgr Format) SK2T-8040
RS/6000 Redbooks Collection (PDF Format) SK2T-8043
Application Development Redbooks Collection SK2T-8037
© Copyright IBM Corp. 1999 209

• A. Tanenbaum, Structured Computer Organization (4th Edition), Prentice Hall
(1999)

• J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach (2nd Edition), Morgan Kaufmann (1996)

• D. Culler, J.Singh, and A. Gupta, Parallel Computer Architecture A
Hardware/Software Approach, Morgan Kaufmann (1999)

• K. Dowd and C. Severance, High Performance Computing (2nd Edition),
O’Reilly (1998)

• W. Gropp, E. Lusk, and A. Skjellum, Using MPI, MIT Press (1994)

• M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI The
Complete Reference, MIT Press (1996)

• P. Pacheco, Parallel Programming with MPI, Morgan Kaufmann (1997)

• W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in
Fortran 77 (2nd Edition), Cambridge University Press (1996)

This redbook is based on an unpublished document written in Japanese. Contact
nakanoj@jp.ibm.com for details.

D.4 Information Available on the Internet

The following information is available on-line.

• http://www.mpi-forum.org/

Message Passing Interface Forum

• http://www.research.ibm.com/mathsci/ams/ams_WSSMP.htm

WSSMP: Watson Symmetric Sparse Matrix Package

• http://www.pallas.de/pages/pmb.htm

Pallas MPI Benchmarks
210 RS/6000 SP: Practical MPI Programming

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, redpieces, and
CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM redbooks from the redbooks Web site. Also read
redpieces and download additional materials (code samples or diskette/CD-ROM images) from this redbooks site.

Redpieces are redbooks in progress; not all redbooks become redpieces and sometimes just a few chapters will
be published this way. The intent is to get the information out much quicker than the formal publishing process
allows.

• E-mail Orders

Send orders by e-mail including information from the redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest information
may be found at the redbooks Web site.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order” section at
this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

IBM employees may register for information on workshops, residencies, and redbooks by accessing the IBM
Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button. Look in the Materials
repository for workshops, presentations, papers, and Web pages developed and written by the ITSO technical
professionals; click the Additional Materials button. Employees may access MyNews at http://w3.ibm.com/ for
redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 1999 211

IBM Redbook Fax Order Form
Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
212 RS/6000 SP: Practical MPI Programming

List of Abbreviations

ADI Alternating Direction Implicit

BLACS Basic Linear Algebra
Communication Subroutines

ESSL Engineering and Scientific
Subroutine Library

FDM Finite Difference Model

GPFS General Parallel File System

HPF High Performance Fortran

ICCG Incomplete Cholesky
Conjugate Gradient

ITSO International Technical
Support Organization

MPI Message Passing Interface

MPIF Message Passing Interface
Forum

MPMD Multiple Programs Multiple
Data

MPP Massively Parallel Processors

MUSPPA Multiple User Space
Processes Per Adapter

NUMA Non-Uniform memory Access

PDPBSV Positive Definite Symmetric
Band Matrix Factorization and
Solve

PE Parallel Environment

PESSL Parallel ESSL

SMP Symmetric Multiprocessor

SOR Successive Over-Relaxation

SPMD Single Program Multiple Data

US User Space

WSSMP Watson Symmetric Sparse
Matrix Package
© Copyright IBM Corp. 1999
 213

214 RS/6000 SP: Practical MPI Programming

Index

A
AIX parallel Environment 155
allgather sample program 174
allgatherv sample program 175
ALLOCATE 60
allreduce sample program 183
alltoall sample program 177
alltoallv sample program 179
Amdahl’s law 41
antisymmetry 134
architectures 1

parallel 1
array descriptor 143

B
bandwidth 4, 43
basic steps of parallelization 89
bcast sample program 15, 164
BLACS 141
BLACS_GET 145
BLACS_GRIDINFO 146, 147
BLACS_GRIDINIT 145
block distribution 44, 54

column-wise block distribution 99
row-wise block distribution 100

block-cyclic distribution 58
blocking communication 24
blocking/non-blocking communication 11
boundary elements 81, 85
boundary node 116
buffer

overlap 71
send and receive 18

bulk data transmissions 69

C
C language 37
cache miss 135
coarse-grained parallelization 49, 50
collective communication 11, 14
collective communication subroutines 163
column-major order 45, 61
comm_split sample program 206
communication

bidirectional 26
blocking/non-blocking 11
collective 11
internode 5
latency 4
overhead 4
point-to-point 11
time 43
unidirectional 25

communicator 13, 36
compiling parallel programs 155
context 143
© Copyright IBM Corp. 1999
contiguous buffer 28
coupled analysis 36, 138
crossbar switch 1
cyclic distribution 56, 57, 117

D
data

non-contiguous 28, 72
data types

derived 28, 197
deadlock 26, 83, 86
deadlocks 11, 87
decomposition

twisted 83
degree of parallelism 83
dependences

loop 80
derived data types 11, 28, 197
DGEMM 140
DGETRF 140
dimension 102
distinct element method 134
distribution

block 54
column-wise 99
cyclic 117
row-block wise 100

DNRAND 133
DO loop

parallelization 47
doubly-nested loops 65
dummy data 139
DURAND 133
DURXOR 133

E
eager protocol 160
effective bandwidth 43
Eigensystem Analysis 141
elapsed time 95
elements

outlier 66
enterprise server architecture 1
environment variable

MP_EAGER_LIMIT 159
environmental subroutines 161
error

standard 158
ESSL 139

F
factorization 116
fine grained parallelization 49
fine-grained parallelization 50
finite accuracy 20
finite difference method 67, 99
215

finite element method 108
flat statements 86
floating-point array

sum 20
flow dependence 79
fluid dynamics 36, 138
fork-join model 3
fourcolor sample program 128
four-color SOR 128
fourcolorp sample program 130
Fourier Transforms 141

G
gather sample program 17, 171
gatherv sample program 172
get_count sample program 197
global matrix 143
GPFS (General Parallel File System) 51
groups

managing 36, 205

H
HPF 3

I
ibcast sample program 165
IBM extensions 74
IBM extensions to MPI 12, 15
Incomplete Cholesky Conjugate Gradient 80
incremental 119
incremental parallelization 92
init sample program 161
inner loop 64
internode communication 5
isend sample program 194

J
jobs

submitting 156
submitting parallel 156

L
Laplace equation 120
latency 43, 44
llq 157
llstatus 156
LoadLeveler 155
local calculation 89
loops

doubly-nested 65
inner 64
outer 63

loop-unrolling 116
LU factorization 116, 148

M
main sample program 56
main2 sample program 81
mainp sample program 82
managing groups 205
massively parallel processors 1
master/worker MPMD 138
matricies in Parallel ESSL 142
matrix operations 102
MAXLOC 21
maxloc_p sample program 21
maxloc_s sample program 21
MAXVAL 21
memory

locations 18
shared 6

message passing 4, 66
Message Passing Interface Forum 11
methods

distinct element 134
finite difference 67
finite element 108
Monte Carlo 131
multi-frontal 153
pipeline 79
red-black SOR 43
SOR 43
two-dimensional finite difference 99
zebra SOR 125

model
fork-join 3
MPMD 137

models of parallel programming 2
MODULE 90
molecular dynamics 134
monitoring parallel jobs 157
Monte Carlo method 131
MP_BUFFER_MEM 159
MP_CSS_INTERRUPT 142
MP_DISABLEINTR 142
MP_EAGER_LIMIT 159
MP_ENABLEINTR 142
MP_EUIDEVICE 156
MP_EUILIB 156
MP_FLUSH 16
MP_HOLD_STDIN 94
MP_HOSTFILE 156
MP_INFOLEVEL 93, 159
MP_LABELIO 13, 158
MP_NODES 156
MP_PGMMODEL 138
MP_PROCS 156
MP_RMPOOL 156
MP_SAVEHOSTFILE 156
MP_STDOUTMODE 13, 53, 158
MP_TASKS_PER_NODE 156
mpCC 155
mpcc 155
mpCC_r 155
mpcc_r 155
216 RS/6000 SP: Practical MPI Programming

MPE_IBCAST 74, 165
MPI data type 16
MPI data type (C bindings) 37
MPI subroutines

collective 12
point to point 12

mpi.h 37
MPI_2DOUBLE_PRECISION 21
MPI_2INTEGER 21
MPI_2REAL 21
MPI_ABORT 163
MPI_ALLGATHER 173
MPI_ALLGATHERV 73, 174
MPI_ALLREDUCE 78, 137, 182
MPI_ALLTOALL 176
MPI_ALLTOALLV 178
MPI_ANY_SOURCE 139, 196
MPI_ANY_TAG 196
MPI_BAND 21
MPI_BARRIER 54, 189
MPI_BCAST 15, 163
MPI_BOR 21
MPI_BXOR 21
MPI_BYTE 17
MPI_CHARACTER 17
MPI_COMM_RANK 13, 162
MPI_COMM_SIZE 13, 161
MPI_COMM_SPLIT 36, 205
MPI_COMM_WORLD 13
MPI_COMPLEX 16
MPI_COMPLEX16 16
MPI_COMPLEX32 17
MPI_COMPLEX8 16
MPI_Datatype 37
MPI_DOUBLE_COMPLEX 16
MPI_DOUBLE_PRECISION 16
MPI_FINALIZE 13, 162
MPI_GATHER 17, 170
MPI_GATHERV 19, 70, 171
MPI_GET_COUNT 196
MPI_IN_PLACE 18
MPI_INIT 13, 161
MPI_INTEGER 16
MPI_INTEGER1 16
MPI_INTEGER2 16
MPI_INTEGER4 16
MPI_IRECV 24, 195
MPI_ISEND 24, 27, 192
MPI_LAND 21
MPI_LB 30, 202
MPI_LOGICAL 17
MPI_LOGICAL1 17
MPI_LOGICAL2 17
MPI_LOGICAL4 17
MPI_LOR 21
MPI_LXOR 21
MPI_MAX 21
MPI_MAXLOC 21
MPI_MIN 21
MPI_MINLOC 21

MPI_Op 37
MPI_OP_CREATE 187
MPI_PACKED 17
MPI_PROC_NULL 69, 82
MPI_PROD 21
MPI_REAL 16
MPI_REAL16 16
MPI_REAL4 16
MPI_REAL8 16
MPI_RECV 24, 192
MPI_REDUCE 19, 56, 78, 180
MPI_REDUCE_SCATTER 185
MPI_Request 37
MPI_SCAN 89, 183
MPI_SCATTER 166
MPI_SCATTERV 167
MPI_SEND 24, 190
MPI_Status 37
MPI_STATUS_SIZE 93, 192, 196
MPI_SUM 21
MPI_TYPE_COMMIT 203
MPI_TYPE_CONTIGUOUS 29, 198
MPI_TYPE_EXTENT 204
MPI_TYPE_HVECTOR 29, 200
MPI_TYPE_STRUCT 30, 201
MPI_TYPE_VECTOR 29, 199
MPI_UB 30, 202
MPI_WAIT 24, 196
MPI-2 11, 18
MPIF 11
mpif.h 13
MPMD 7, 137
MPP 1, 5
MPP (massively parallel processors) 46
mpxlf 13, 155
mpxlf_r 155
multi-frontal method 153
MUSPPA 5

N
neighboring processes 85
nested loops 61
network devices

protocols 156
non-blocking communication 24

use 24
non-contiguous data 28, 72
NUMA 2
NUMROC 147

O
one-dimensional FDM 67
op_create sample program 188
op_create2 sample program 189
operations

matrix 102
reduction 19

outer loop 63
outlier elements 66
217

P
para_range 55
para_type_block2 32
para_type_block2a 31
para_type_block3 34
para_type_block3a 33
parallel architectures 1
Parallel Environment 2.4 155
Parallel Environment for AIX 155
Parallel ESSL 139

matrices 142
previous versions 144
utilities 145

parallel jobs
monitoring 157

parallel programs
compiling 155
running 155

parallel speed-up 41, 95
parallelization 41

basic steps 89
coarse-grained 49
fine grained 49

parallelized input 52
PBLAS 141
PDGEMM 140
PDGETRF 148
PDGETRS 149, 150
PDURNG 133
performance 2, 3, 28, 46, 51, 58, 72, 74, 81, 84, 101,
128, 133

elapsed time 95
measurements 94

PESSL 6
pipeline method 79
pivoting 116
point-to-point communication 11, 23
point-to-point subroutines 189
POSIX 2
POWER3 1
prefix sum 87
primary process 114
process grid 102, 143, 145
programs

allgather 174
allgatherv 175
allreduce 183
alltoall 177
alltoallv 179
bcast 15, 164
comm_split 206
compiling 155
fourcolor 128
fourcolorp 130
gather 17, 171
gatherv 172
get_count 197
ibcast 165
init 161
isend 194

main 56
main2 81
mainp 82
maxloc_p 21
maxloc_s 21
op_create 188
op_create2 189
reduce 19, 181
reduce_scatter 186
running 156
scan 184
scatter 167
scatterv 169
send 191
SOR 120
type_contiguous 198
type_extent 204
type_hvector 200
type_struct 202
type_vector 199
zebra 125
zebrap 127

protocols
directory-based 2
eager 160
high-speed 5
IP 6
rendezvous 159
specifying 156
user space 5, 44

PWSSMP 153

R
random number generation 131
random walk 131
rank 8, 13
receive buffer 18
red-black SOR method 43, 121
reduce sample program 19, 181
reduce_scatter sample program 186
reduction operation 19, 77
reduction operations 77
rendezvous protocol 159
RS/6000 Model S7A 1
RS/6000 SP 1
rtc 96
running parallel programs 155

S
S7A, RS/6000 server 1
scan sample program 184
scatter sample program 167
scatterv sample program 169
send buffer 18
send sample program 191
serial processing 87
shared memory 6
shrinking arrays 59
shrunk array 59
218 RS/6000 SP: Practical MPI Programming

single operating system 2
Singular Value Analysis 141
SMP (symmetric multiprocessor) 46
SMP architecture 1
SNRAND 133
SOR

four-color 128
zebra 127

SOR method 43, 120
SOR sample program 120
SPMD 7
standard error 158
standard output 158
statements

flat 86
submitting parallel jobs 156
subroutines

collective 12
collective communication 14, 163
derived data types 30
environmental 161
point to point 12
point-to-point 189

superposition 78
SURAND 133
SURXOR 133
symmetric band matrix factorization 143

T
TCP/IP 11
transmissions

bulk 69
transposing block distributions 75
trouble shooting 93
twisted decomposition 83
two-dimensional FFT 75
type_contiguous sample program 198
type_extent sample program 204
type_hvector sample program 200
type_struct sample program 202
type_vector sample program 199

U
unidirectional communication 25
unpacking data 28
user space protocol 5
using standard output 158

W
WSSMP 153

Web site 153

Z
zebra sample program 125
zebra SOR method 125
zebrap sample program 127
219

220 RS/6000 SP: Practical MPI Programming

© Copyright IBM Corp. 1999 221

ITSO Redbook Evaluation

RS/6000 SP: Practical MPI Programming
SG24-5380-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com/
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

SG24-5380-00

Printed in the U.S.A.

R
S/6000

SP
:

P
racticalM

P
I

P
rogram

m
ing

SG
24-5380-00

	Contents
	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. Introduction to Parallel Programming
	1.1 Parallel Computer Architectures
	1.2 Models of Parallel Programming
	1.2.1 SMP Based
	1.2.2 MPP Based on Uniprocessor Nodes (Simple MPP)
	1.2.3 MPP Based on SMP Nodes (Hybrid MPP)

	1.3 SPMD and MPMD

	Chapter 2. Basic Concepts of MPI
	2.1 What is MPI?
	2.2 Environment Management Subroutines
	2.3 Collective Communication Subroutines
	2.3.1 MPI_BCAST
	2.3.2 MPI_GATHER
	2.3.3 MPI_REDUCE

	2.4 Point-to-Point Communication Subroutines
	2.4.1 Blocking and Non-Blocking Communication
	2.4.2 Unidirectional Communication
	2.4.3 Bidirectional Communication

	2.5 Derived Data Types
	2.5.1 Basic Usage of Derived Data Types
	2.5.2 Subroutines to Define Useful Derived Data Types

	2.6 Managing Groups
	2.7 Writing MPI Programs in C

	Chapter 3. How to Parallelize Your Program
	3.1 What is Parallelization?
	3.2 Three Patterns of Parallelization
	3.3 Parallelizing I/O Blocks
	3.4 Parallelizing DO Loops
	3.4.1 Block Distribution
	3.4.2 Cyclic Distribution
	3.4.3 Block-Cyclic Distribution
	3.4.4 Shrinking Arrays
	3.4.5 Parallelizing Nested Loops

	3.5 Parallelization and Message-Passing
	3.5.1 Reference to Outlier Elements
	3.5.2 One-Dimensional Finite Difference Method
	3.5.3 Bulk Data Transmissions
	3.5.4 Reduction Operations
	3.5.5 Superposition
	3.5.6 The Pipeline Method
	3.5.7 The Twisted Decomposition
	3.5.8 Prefix Sum

	3.6 Considerations in Parallelization
	3.6.1 Basic Steps of Parallelization
	3.6.2 Trouble Shooting
	3.6.3 Performance Measurements

	Chapter 4. Advanced MPI Programming
	4.1 Two-Dimensional Finite Difference Method
	4.1.1 Column-Wise Block Distribution
	4.1.2 Row-Wise Block Distribution
	4.1.3 Block Distribution in Both Dimensions (1)
	4.1.4 Block Distribution in Both Dimensions (2)

	4.2 Finite Element Method
	4.3 LU Factorization
	4.4 SOR Method
	4.4.1 Red-Black SOR Method
	4.4.2 Zebra SOR Method
	4.4.3 Four-Color SOR Method

	4.5 Monte Carlo Method
	4.6 Molecular Dynamics
	4.7 MPMD Models
	4.8 Using Parallel ESSL
	4.8.1 ESSL
	4.8.2 An Overview of Parallel ESSL
	4.8.3 How to Specify Matrices in Parallel ESSL
	4.8.4 Utility Subroutines for Parallel ESSL
	4.8.5 LU Factorization by Parallel ESSL

	4.9 Multi-Frontal Method

	Appendix A. How to Run Parallel Jobs on RS/6000 SP
	A.1 AIX Parallel Environment
	A.2 Compiling Parallel Programs
	A.3 Running Parallel Programs
	A.3.1 Specifying Nodes
	A.3.2 Specifying Protocol and Network Device
	A.3.3 Submitting Parallel Jobs

	A.4 Monitoring Parallel Jobs
	A.5 Standard Output and Standard Error
	A.6 Environment Variable MP_EAGER_LIMIT

	Appendix B. Frequently Used MPI Subroutines Illustrated
	B.1 Environmental Subroutines
	B.1.1 MPI_INIT
	B.1.2 MPI_COMM_SIZE
	B.1.3 MPI_COMM_RANK
	B.1.4 MPI_FINALIZE
	B.1.5 MPI_ABORT

	B.2 Collective Communication Subroutines
	B.2.1 MPI_BCAST
	B.2.2 MPE_IBCAST (IBM Extension)
	B.2.3 MPI_SCATTER
	B.2.4 MPI_SCATTERV
	B.2.5 MPI_GATHER
	B.2.6 MPI_GATHERV
	B.2.7 MPI_ALLGATHER
	B.2.8 MPI_ALLGATHERV
	B.2.9 MPI_ALLTOALL
	B.2.10 MPI_ALLTOALLV
	B.2.11 MPI_REDUCE
	B.2.12 MPI_ALLREDUCE
	B.2.13 MPI_SCAN
	B.2.14 MPI_REDUCE_SCATTER
	B.2.15 MPI_OP_CREATE
	B.2.16 MPI_BARRIER

	B.3 Point-to-Point Communication Subroutines
	B.3.1 MPI_SEND
	B.3.2 MPI_RECV
	B.3.3 MPI_ISEND
	B.3.4 MPI_IRECV
	B.3.5 MPI_WAIT
	B.3.6 MPI_GET_COUNT

	B.4 Derived Data Types
	B.4.1 MPI_TYPE_CONTIGUOUS
	B.4.2 MPI_TYPE_VECTOR
	B.4.3 MPI_TYPE_HVECTOR
	B.4.4 MPI_TYPE_STRUCT
	B.4.5 MPI_TYPE_COMMIT
	B.4.6 MPI_TYPE_EXTENT

	B.5 Managing Groups
	B.5.1 MPI_COMM_SPLIT

	Appendix C. Special Notices
	Appendix D. Related Publications
	D.1 International Technical Support Organization Publications
	D.2 Redbooks on CD-ROMs
	D.3 Other Publications
	D.4 Information Available on the Internet

	How to Get ITSO Redbooks
	IBM Redbook Fax Order Form

	List of Abbreviations
	Index
	ITSO Redbook Evaluation

