CMPE 300 ANALYSIS OF ALGORITHMS
FINAL ANSWERS
1. function Sort2DMesh (L, n)

Model: 2-dimensional mesh Mq,q with p=n=q2 processors

Input: L (a list of size n), range: Pi,j, 0(i,j(q-1
Output: L (sorted in snake order), range: Pi,j, 0(i,j(q-1

for Step←1 to
[image: image1.wmf]é

ù

n

2

log

+1 do

// executes for logn+1 steps

if odd(Step) then

// rows are sorted at odd-numbered steps

for k←0 to q-1 do

// sorting each row in parallel takes q steps

for Pi,j, 0(i(q-1, 0(j<q-1 and (j mod 2=k mod 2) do in parallel // even-odd transposition sort

Pi,j:Temp (Pi,j+1:L

// even-numbered rows sorted in ascending order,

// odd-numbered rows sorted in descending order

if ((Pi,j:L > Pi,j:Temp) and (even(i))) or ((Pi,j:L < Pi,j:Temp) and (odd(i))) then

Pi,j+1:L (Pi,j:L

Pi,j:L ← Pi,j:Temp

endif

end in parallel

endfor

else

// columns are sorted at even-numbered steps

for k←0 to q-1 do

// sorting each column in parallel takes q steps

for Pi,j, 0(i<q-1, 0(j(q-1 and (i mod 2=k mod 2) do in parallel // even-odd transposition sort

Pi,j:Temp (Pi+1,j:L

if (Pi,j:L > Pi,j:Temp) then
// all columns sorted in ascending order

Pi+1,j:L (Pi,j:L

Pi,j:L ← Pi,j:Temp

endif

end in parallel

endfor

endif

endfor

Basic operations: parallel assignments

W(n) =
[image: image2.wmf]é

ù

(

)

1

log

2

2

+

n

n

 (((
[image: image3.wmf]n

n

log

)

C(n) = p(n)*W(n) =
[image: image4.wmf]é

ù

(

)

1

log

2

*

2

+

n

n

n

 (((
[image: image5.wmf]n

n

log

2

/

3

)
S(n) = W*(n)/W(n) =
[image: image6.wmf](

)

é

ù

(

)

(

)

1

log

2

/

log

2

+

n

n

n

n

 (((
[image: image7.wmf]n

)
E(n) = W*(n)/C(n) =
[image: image8.wmf](

)

é

ù

(

)

(

)

1

log

2

/

log

2

2

/

3

+

n

n

n

n

 ≈
[image: image9.wmf]n

/

1

2. Suppose that L[0:n-1] is a list of distinct elements. When two elements X and Y are compared, say X wins the comparison if X>Y and X looses the comparison otherwise.

Let W denote the set of elements that have not yet lost any comparison.

Initially, |W|=n. Finally, |W| must be 1.

· Parallel step 1:

Each element can be read by at most one processor (because of ER model).

Thus, each processor can compare two elements L[i],L[j](W, which do not take part in any comparison of other processors.

So, |W| can decrease by half at most.

(After this step, |W|(n/2.

· Parallel step 2:

A processor compares L[i] and L[j]. The possible cases are:

· L[i],L[j](W : Adversory does not do anything. Half of the elements in W (1 out of 2) remain in W.

· L[i],L[j](W : Adversory does not do anything. |W| remains the same.

· L[i](W, L[j](W : Adversory makes L[i] greater than L[j]. This does not violate previous execution. Because, L[i] has already won every previous comparison (i.e. L[i] was compared with elements which are not in W now). So, if it were larger in those previous comparisons, it would again win and nothing would change. So, |W| remains the same.

So, |W| can decrease by half at most.

(After this step, |W|(n/4.

· The same strategy is applied in each parallel step.

.

.

.

We will need
[image: image10.wmf]é

ù

n

2

log

 parallel comparison steps to arrive at |W|=1.

So, worst-case lower bound is ((log n).

3. Consider the following figure:

The idea is as follows: Generate points randomly in this square and count how many of them fall inside the circle. For large n (number of points), we expect that the ratio of the areas ((r2 / 4r2) will be close to (c / n), where c denotes the number of points that fall inside the circle. That is:

[image: image11.wmf]n

c

n

c

r

r

4

4

2

2

=

Þ

=

p

p

function ApproximatePi (n)

Hit ← 0

// number of points that fall inside the circle

for i←1 to n do

call Random ({-1,…,1},x)
// get a random point (x,y) within the square

call Random ({-1,…,1},y)

if (x2+y2 < 1.0) then

// check whether point (x,y) is inside the circle

Hit ← Hit + 1

// if so, increment the counter

endif

endfor

return (4*Hit/n)

// approximation for (
end

In order to simplify the algorithm, we assumed that the above figure is centered at the origin and r=1. Thus, we can check whether a point (x,y) falls inside the circle by the condition x2+y2<1.

 r

_1247318989.unknown

_1247319182.unknown

_1247319310.unknown

_1247319359.unknown

_1247319266.unknown

_1247319027.unknown

_1247318861.unknown

_1247318950.unknown

_1230114821.unknown

_1247315551.unknown

_1197896188.unknown

