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3.2 SEQUENCES AND SUMMATIONS

DEF: A sequence in a set A is a function f
from a subset of the integers (usually {0,1,2,...}
or {1,2,3,...}) to A. The values of a sequence
are also called terms or entries.

NOTATION: The value f(n) is usually denoted a,,.
A sequence is often written ag,ai,as, . ...

Example 3.2.1: Two sequences.

1 11
a'n_n 7273747"‘
b, = (—1)* 1,-1,1,—1,...

Example 3.2.2: Five ubiquitous sequences.

n? 0,1,4,9,16,25,36,49,...

n® 0,1,8,27,64,125,216,343, . ..
2" 1,2,4,8,16,32,64,128, ...

3" 1,3,9,27,81,243,729, 2187, . ..
n! 1,1,2,6,24,120, 720, 5040, . . .
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STRINGS
DEF: A set of characters is called an alphabet.

Example 3.2.3: Some common alphabets:
{0,1} the binary alphabet
{0,1,2,3,4,5,6,7,8,9} the decimal digits

{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, F}
the hexadecimal digits

{A,B,C,D,..., XY, Z} English uppercase
ASCII

DEF: A string is a sequence in an alphabet.

NOTATION: Usually a string is written without
commas, so that consecutive characters are jux-
taposed.

Example 3.2.4: If f(0) = M, f(1) = A,
f(2) =T, and f(3) = H, then write “MATH”.
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SPECIFYING a RULE

Problem: Given some initial terms ag, a1, ..., ax
of a sequence, try to construct a rule that is
consistent with those initial terms.

Approaches: There are two standard kinds of
rule for calculating a generic term a,,.

DEF: A recursion for a,, is a function whose
arguments are earlier terms in the sequence.

DEF: A closed form for a,, is a formula whose
argument is the subscript n.

Example 3.2.5: 1,3,5,7,9,11,...
recursion: ap=1; a, =a,—-1+2forn>1
closed form: a,, = 2n + 1

The differences between consecutive terms
often suggest a recursion. Finding a recursion is
usually easier than finding a closed formula.

Example 3.2.6: 1,3,7,13,21,31,43,...
recursion: bp =1; b, =b,—1+2nforn >1

closed form: b, =n*+n+1
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Sometimes, it is significantly harder to construct
a closed formula.

Example 3.2.7: 1,1,2,3,5,8,13,21,34,...

recursion: cg = 1,¢; = 1;
Cp, = Cp—1 + Cp_o forn >1

1
closed form: ¢, = — [G"H — g™ ]

V5
1++/5 1—+/5

dag—
Qang 2

where G =

INFERRING a RULE

The ESSENCE of science is inferring rules from
partial data.

Example 3.2.8: Sit under apple tree.
Infer gravity.

Example 3.2.9: Watch starlight move 0.15
arc-seconds in total eclipse. Infer relativity.

Example 3.2.10: Observe biological species.
Infer DNA.
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Important life skill: Given a difficult general
problem, start with special cases you can solve.

Example 3.2.11: Find a recursion and a
closed form for the arithmetic progression:
c,c+d,c+2d,c+ 3d, ...

recursion: ag =¢; G, = anp_1 +d
closed form: a,, = ¢ + nd.

Q: How would you decide that a given sequence
is an arithmetic progression?

A: Calculate differences betw consec terms.

DEF: The difference sequence for a sequence
a, is the sequence a!, = a,, — a,,_1 for n > 1.

a,: 1 3 5 7 9 11
Example 3.2.5 redux: a2 2 2 2 2

Analysis: Since a), is constant, the sequence is
specified by this recursion:
ap = l;a, =a,_1+2forn > 1.

Moreover, it has this closed form:
an =ag+aj +as+---+a,

—ay+24+2+---+42 =1+4+2n
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If you don’t get a constant sequence on the first
difference, then try reiterating.

Revisit Example 1.7.6: 1,3,7,13,21,31,43,...

b,: 1 3 7 13 21 31 43
bo:2 4 6 8 10 12
B2 2 2 2 2
Analysis: Since /! is constant, we have
bl =2+ 2n
Therefore,

by, =bo + 0] + 05 + -+ + by,

=bp+2) j=1+(@m"+n)=n"+n+1
j=1

Consolation Prize: Without knowing about
finite sums, you can still extend the sequence:

by: 1 3 7 13 21 31 43 57
o2 4 6 8 10 12 14
B 2 2 2 2 2 2

n
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SUMMATIONS

DEF: Let a,, be a sequence. Then the big-sigma

notation
n
D
Jj=m

means the sum

Am + QGm+41 + A2 + -+ ap—1 + ap
TERMINOLOGY: j is the index of summation
TERMINOLOGY: m is the lower limit
TERMINOLOGY: n is the upper limit
TERMINOLOGY: a; 1s the summand

Theorem 3.2.1. These formulas for summing

falling powers are provable by induction (see
83.3):

7 2 2 — 3
D=1 3= gt
J= J=

1 n 1
-3 4 -k k41
Y B=crt Y k= 1)kt
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Example 3.2.12: True Love and Thm 3.2.1

On the ;" day ... True Love gave me

G +1)

Jj+GG-1+---+1= gifts.

—
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-4 78] = 364 slow

143

. —— =364 fast
3 as

N —= DN = DN | =

Corollary 3.2.2. High-powered look-ahead to
formulas for summing j*:j =0,1,...,n

Zg Z + 51 = ;(n+1)§+%(n+1)2

]—1

Jj= 1

Coursenotes by Prof. Jonathan L. Gross for use with Rosen: Discrete Math and Its Applic., 5th Ed.



Section 3.2 Sequences and Summations 3.2.9

POTLATCH RULES for CARDINALITY

DEF: nondominating cardinality: Let A and
B be sets. Then |A| < |B| means that 3 one-to-
one function f: A — B.

DEF: Set A and B have equal cardinality
(write |A| = |B|) if 3 bijection f : A — B, which
obviously implies that |A| < |B| and |B| < |A|.

DEF: strictly dominating cardinality: Let
A and B be sets. Then |A| < |B| means that
A < |B| and [A] £ |B].

DEF: The cardinality of a set A is n if
Al = |{1,2,...,n}| and 0 if A = (). Such cardi-
nalities are called finite. NOTATION: |A| = n.

DEF: The cardinality of N is w (“omega”), or
alternatively, Ry (“aleph null”).

DEF: A set is countable if it is finite or w.

Remark: Nj is the smallest infinite cardinality.
The real numbers have cardinality ¥; (“aleph
one” ), which is larger than Ny, for reasons to be
given.
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INFINITE CARDINALITIES

Proposition 3.2.3. There are as many even
nonnegative numbers as non-negative numbers.

Proof: f(2n) =n is a bijection. O

Theorem 3.2.4. There are as many positive
integers as rational fractions.

RO R RIWERINERIE
TN NI NIW NN N
WO WA WIW WIN W
TR BDIDDNWDAIN DR

galo gl alw AN O R
"ol ol Olw oOIN Ol

Proof: f(§>:(p+q—1)(p+q—2)+p o

2
Example 3.2.13: f (5) = ———>4+2=28
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Theorem 3.2.5. (G. Cantor) There are more
positive real numbers than positive integers.

Semi-proof: A putative bijection f : ZT — R*
would generate a sequence in which each real
number appears somewhere as an infinite decimal
fraction, like this:

F(1) = .8841752032669031 . .
£(2) = .1415926531424450 . . .
£(3) = .3202313932614203 . . .
F(4) = .1679888138381728.. ..
F(5) = .0452998136712310. ..
f(.)::.73988...

Let f(n)r be the kth digit of f(n), and let m be
the permutation 0 — 9,1 +— 0,...9 — 8. Then
the infinite decimal fraction whose kth digit is
w(f(n)k) is not in the sequence. Therefore, the
function f is not onto, and accordingly, not a
bijection. O
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