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3.2 SEQUENCES AND SUMMATIONS

def: A sequence in a set A is a function f
from a subset of the integers (usually {0, 1, 2, . . .}
or {1, 2, 3, . . .}) to A. The values of a sequence
are also called terms or entries.

notation: The value f(n) is usually denoted an.
A sequence is often written a0, a1, a2, . . ..

Example 3.2.1: Two sequences.

an =
1
n

1,
1
2
,
1
3
,
1
4
, . . .

bn = (−1)n 1,−1, 1,−1, . . .

Example 3.2.2: Five ubiquitous sequences.

n2 0, 1, 4, 9, 16, 25, 36, 49, . . .

n3 0, 1, 8, 27, 64, 125, 216, 343, . . .

2n 1, 2, 4, 8, 16, 32, 64, 128, . . .

3n 1, 3, 9, 27, 81, 243, 729, 2187, . . .

n! 1, 1, 2, 6, 24, 120, 720, 5040, . . .
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STRINGS

def: A set of characters is called an alphabet.

Example 3.2.3: Some common alphabets:

{0, 1} the binary alphabet

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9} the decimal digits

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}
the hexadecimal digits

{A, B, C, D, . . . , X, Y, Z} English uppercase

ASCII

def: A string is a sequence in an alphabet.

notation: Usually a string is written without
commas, so that consecutive characters are jux-
taposed.

Example 3.2.4: If f(0) = M, f(1) = A,
f(2) = T, and f(3) = H, then write “MATH”.
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SPECIFYING a RULE

Problem: Given some initial terms a0, a1, ..., ak

of a sequence, try to construct a rule that is
consistent with those initial terms.

Approaches: There are two standard kinds of
rule for calculating a generic term an.

def: A recursion for an is a function whose
arguments are earlier terms in the sequence.

def: A closed form for an is a formula whose
argument is the subscript n.

Example 3.2.5: 1, 3, 5, 7, 9, 11, . . .

recursion: a0 = 1; an = an−1 + 2 for n ≥ 1

closed form: an = 2n + 1

The differences between consecutive terms
often suggest a recursion. Finding a recursion is
usually easier than finding a closed formula.

Example 3.2.6: 1, 3, 7, 13, 21, 31, 43, . . .

recursion: b0 = 1; bn = bn−1 + 2n for n ≥ 1

closed form: bn = n2 + n + 1
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Sometimes, it is significantly harder to construct
a closed formula.

Example 3.2.7: 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

recursion: c0 = 1, c1 = 1;
cn = cn−1 + cn−2 for n ≥ 1

closed form: cn =
1√
5

[
Gm+1 − gm+1

]

where G =
1 +

√
5

2
and g =

1 −
√

5
2

INFERRING a RULE

The ESSENCE of science is inferring rules from
partial data.

Example 3.2.8: Sit under apple tree.
Infer gravity.

Example 3.2.9: Watch starlight move 0.15
arc-seconds in total eclipse. Infer relativity.

Example 3.2.10: Observe biological species.
Infer DNA.
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Important life skill: Given a difficult general
problem, start with special cases you can solve.

Example 3.2.11: Find a recursion and a
closed form for the arithmetic progression:

c, c + d, c + 2d, c + 3d, . . .

recursion: a0 = c; an = an−1 + d

closed form: an = c + nd.

Q: How would you decide that a given sequence
is an arithmetic progression?

A: Calculate differences betw consec terms.

def: The difference sequence for a sequence
an is the sequence a′

n = an − an−1 for n ≥ 1.

Example 3.2.5 redux: an : 1 3 5 7 9 11
a′

n : 2 2 2 2 2

Analysis: Since a′
n is constant, the sequence is

specified by this recursion:
a0 = 1; an = an−1 + 2 for n ≥ 1.

Moreover, it has this closed form:

an = a0 + a′
1 + a′

2 + · · · + a′
n

= a0 + 2 + 2 + · · · + 2 = 1 + 2n
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If you don’t get a constant sequence on the first
difference, then try reiterating.

Revisit Example 1.7.6: 1, 3, 7, 13, 21, 31, 43, . . .

bn : 1 3 7 13 21 31 43
b′n : 2 4 6 8 10 12
b′′n : 2 2 2 2 2

Analysis: Since b′′n is constant, we have
b′n = 2 + 2n

Therefore,

bn = b0 + b′1 + b′2 + · · · + b′n

= b0 + 2
n∑

j=1

j = 1 + (n2 + n) = n2 + n + 1

Consolation Prize: Without knowing about
finite sums, you can still extend the sequence:

bn : 1 3 7 13 21 31 43 57
b′n : 2 4 6 8 10 12 14
b′′n : 2 2 2 2 2 2
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SUMMATIONS

def: Let an be a sequence. Then the big-sigma
notation

n∑
j=m

aj

means the sum

am + am+1 + am+2 + · · · + an−1 + an

terminology: j is the index of summation

terminology: m is the lower limit

terminology: n is the upper limit

terminology: aj is the summand

Theorem 3.2.1. These formulas for summing
falling powers are provable by induction (see
§3.3):

n∑
j=1

j1 =
1
2
(n + 1)2

n∑
j=1

j2 =
1
3
(n + 1)3

n∑
j=1

j3 =
1
4
(n + 1)4

n∑
j=1

jk =
1

k + 1
(n + 1)k+1
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Example 3.2.12: True Love and Thm 3.2.1

On the jth day ... True Love gave me

j + (j − 1) + · · · + 1 =
(j + 1)2

2
gifts.

=
1
2

13∑
j=2

j2 =
1
2

[
22 + · · · + 132

]

=
1
2

[2 + 6 + · · · + 78] = 364 slow

=
1
2
· 143

3
= 364 fast

Corollary 3.2.2. High-powered look-ahead to
formulas for summing jk : j = 0, 1, ..., n.

n∑
j=1

j2 =
n∑

j=1

(j2 + j1) =
1
3
(n + 1)3 +

1
2
(n + 1)2

n∑
j=1

j3 =
n∑

j=1

(j3 + 3j2 + j1) = · · ·

Coursenotes by Prof. Jonathan L. Gross for use with Rosen: Discrete Math and Its Applic., 5th Ed.



Section 3.2 Sequences and Summations 3.2.9

POTLATCH RULES for CARDINALITY

def: nondominating cardinality: Let A and
B be sets. Then |A| ≤ |B| means that ∃ one-to-
one function f : A → B.

def: Set A and B have equal cardinality
(write |A| = |B|) if ∃ bijection f : A → B, which
obviously implies that |A| ≤ |B| and |B| ≤ |A|.

def: strictly dominating cardinality: Let
A and B be sets. Then |A| < |B| means that
|A| ≤ |B| and |A| �= |B|.

def: The cardinality of a set A is n if
|A| = |{1, 2, . . . , n}| and 0 if A = ∅. Such cardi-
nalities are called finite. notation: |A| = n.

def: The cardinality of N is ω (“omega”), or
alternatively, ℵ0 (“aleph null”).

def: A set is countable if it is finite or ω.

Remark: ℵ0 is the smallest infinite cardinality.
The real numbers have cardinality ℵ1 (“aleph
one”), which is larger than ℵ0, for reasons to be
given.
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INFINITE CARDINALITIES

Proposition 3.2.3. There are as many even
nonnegative numbers as non-negative numbers.

Proof: f(2n) = n is a bijection. ♦

Theorem 3.2.4. There are as many positive
integers as rational fractions.

Proof: f

(
p

q

)
=

(p + q − 1)(p + q − 2)
2

+ p ♦

Example 3.2.13: f

(
2
3

)
=

(4)(3)
2

+ 2 = 8
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Theorem 3.2.5. (G. Cantor) There are more
positive real numbers than positive integers.

Semi-proof: A putative bijection f : Z+ → R+

would generate a sequence in which each real
number appears somewhere as an infinite decimal
fraction, like this:

f(1) = .8841752032669031 . . .

f(2) = .1415926531424450 . . .

f(3) = .3202313932614203 . . .

f(4) = .1679888138381728 . . .

f(5) = .0452998136712310 . . .

. . .

f(?) = .73988 . . .

Let f(n)k be the kth digit of f(n), and let π be
the permutation 0 
→ 9, 1 
→ 0, . . . 9 
→ 8. Then
the infinite decimal fraction whose kth digit is
π(f(n)k) is not in the sequence. Therefore, the
function f is not onto, and accordingly, not a
bijection. ♦
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