Section 6.1 Recurrence Relations 6.1.1

6.1 RECURRENCE RELATIONS

DEF: A recurrence system is a finite set of
initial conditions

ap = Cp, a1 —=°¢1, ..., Qg = C{d
and a formula (called a recurrence relation)
an = F(a0, - an1)

that expresses a subscripted variable as a
function of lower-indexed values. A sequence

< ap, > = Qap,01,09,...

satisfying the initial conditions and the recur-
rence relation is called a solution.

Example 6.1.1: The recurrence system with
initial condition
ag — 0

and recurrence relation

Apn—1 +2n —1

an
has the sequence of squares as its solution:

<a,> = 0,1,4,9,16,25,...
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NAIVE METHOD OF SOLUTION

Step 1. Use the recurrence to calculate a few
more values beyond the given initial values.

Step 2. Spot a pattern and guess the right
answer.

Step 3. Prove your answer is correct
(by induction).

Example 6.1.1, continued:
Step 1. Startmg from ag = 0, we calculate

a1 = a+2-1-1 = 0+41=1
aa, = a1+2-2—-1 = 143=4
ai = a+2-3—1 = 4+5=9
a1y = a+2-4—-1 = 9+4+7=16
Step 2. Looks like f(n) = 2.
Step 3. BASIS: aqp = 0 = = f(0).

IND HYP: Assume that a,,_1 = (n — 1)
IND STEP: Then

An = Ap—1 + 2n — 1 from the recursion
= (n—1?+2n—-1 by IND HYP
=(n*—2n+1)+2n—-1 = n*
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APPLICATIONS

Example 6.1.2: Compound Interest
Deposit $1 to compound at annual rate r.

Po — 1 Pn = (1 + r)pn—l
EARLY TERMS: 1,1 +r, (1 +7)%, (1 +7r)3,...
APPARENT PATTERN: p, = (1 +7r)"

BASIS: True for n = 0.
IND HYP: Assume that p,_1 = (1 + r)n—l
IND STEP: Then

pn = (1 +7r)p,_1 by the recursion
= (1+7r)1+7"1' by IND HYP
= (1+7r)" by arithmetic <
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Example 6.1.3: Tower of Hanoi

C D
C D)

RECURRENCE SYSTEM
ho =0
hp =2h,—1+1

SMALL CASES: 0,1,3,7,15,31, ...
APPARENT PATTERN: h,, = 2" — 1

BASIS: ho =0= 20 —1
IND HYP: Assume that h,, ; =271 —1

IND STEP: Then
h, =2h,_1+1 by the recursion

=2(2""'~1)+1 by IND HYP
= 2" —1 by arithmetic
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However, the naive method has limitations:

e It can be non-trivial to spot the pattern.
e It can be non-trivial to prove that the
apparent pattern is correct.

Example 6.1.4: Fibonacci Numbers
fo=0 fi=1

fn — fn—l + fn—2

Fibo seq: 0,1,1,2,3,5,8,13,21,34,55, ... .

APPARENT PATTERN (ha ha)

1 n n
thMG(LH@)—O—VQ}

6.1.5

It is possible, but not uncomplicated, to simplify
this with the binomial expansion and to then use

induction.
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Sometimes there is no fixed limit on the number
of previous terms used by a recursion.

Example 6.1.5: Catalan Recursion
Co — 1
Crp, = CoCp—1 + C1Cp—o + -+ +cCp_1¢0 for n > 1.

SMALL CASES

ci=copcop=1-1=1

co =coc1+cico=1-14+1-1=2

c3 = cCoCy +c1¢1 +cocp=1-241-14+2-1=5
cs=1-5+1-24+2-145-1=14
cs=1-144+1-5+2-24+5-14+14-1=142

Catalan seq: 1,1,2,5,14,42,....

n+1\n

The Catalan recursion counts binary trees and
other objects in computer science.

ADMONITION

e Most recurrence relations have no solution.

SOLUTION: ¢, — (2”>

e Most sequences have no representation as a
recurrence relation. (they are random)
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