Section 6.2 Solving Easy Recurrences 6.2.1

6.2 SOLVING EASY RECURRENCES

We identify a type of recurrence that can be
solved by special methods.

DEF: A recurrence relation
an = f(ao, ..., an_1)

has degree k if the function f depends on the
term a,_j and if it depends on no terms of lower
index. It is linear of degree k if it has the form

an = €101+ Coan_2+ -+ CpUp_k + g(n)
where each cj is a real function and ¢ # 0. It is
homogenous if g(n) = 0.

Example 6.2.1: The recurrence system with
initial condition
ag — 0

and recurrence relation

Apn—1 +2n —1

A

is linear of degree one and non-homogeneous.
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Remark: Similarly, the interest recursion and
the Tower of Hanoi recursion are linear of degree
one and non-homogeneous.

Example 6.2.2: Fibonacci Numbers

Jo=1 fi=1

fn — fn—l + fn—2

The Fibonacci recurrence is linear of degree two
and homogeneous.

Example 6.2.3: Catalan Recursion

Co — 1

Crp, = CoCp—1 + C1Cp_o + -+ Cp_1¢0 for n > 1.
The Catalan recusion is quadratic, homogeneous,
and not of fixed degree.

Remark: Solving the Catalan recursion is well
beyond the level of this course.
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SOLVING HOMOG LINEAR RR’s with CONST COEFF’S

DEF: The special method for solving an
homogeneous linear RR with constant coeft’s

anp = C10p—1 + CoQn—2 + Crln—k
is as follows:

1. Assume there exists a solution of the form
a, = r" and substitute it into the recurrence:

o= e egr™? 4 ™R

Cancelling the excess powers of r and
normalizing yields what is called the
characteristic equation:

k k=1 _ o k=2 _

r* — cir Ca oo —cp = 0

2. Find the roots 1,729, ...,r; of the char eq,
which are called the characteristic roots.

3. Form the general solution
a, = o117 +aory + -+ agry,

4. Use initial conditions to form k& simultaneous
linear equations in «q, ..., a; and solve for them.
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DEGREE ONE, LINEAR HOMOGENEOUS

Example 6.2.4: General RR of Degree 1
ag = d initial condition

a, = ca™ ! recurrence

chareq: "—c¢ = 0 has root r =rc

general solution: a,, = a;c”

simultaneous linear equations: d = a1c® = ay
solution to simult lin eq: a1 = d

problem solution: a,, = dc"

Example 6.2.5: Compound Interest again
Deposit $3 to be compounded annually at rate r.
Po = 3 Pn = (1 + r)pn—l

Solution: p, = 3(1+r)"

Coursenotes by Prof. Jonathan L. Gross for use with Rosen: Discrete Math and Its Applic., 5th Ed.



Section 6.2 Solving Easy Recurrences 6.2.5

DEGREE TWO, LINEAR HOMOGENEOUS

Example 6.2.6: FEasy degree two recurrence.
ap =1 a7 = 4 initial conditions

a, = 9a,_1 — ba,,_o recurrence

char eq: r>—5r4+6 =0 has roots 11 =3 7y = 2.
gen sol: a,, = a13"™ + a2"

. . ap =1=a1 + a
simult lin eqns
aq :4:3041—|—2042

have solution: a1 =2 a9 = —1.
= problem solution: a, = 2-3" — 2"

Consider changing the initial conditions to
ap =2 a3 = 5. Then the

ag = 2 = o1 + a9

simult lin eqns
an :5:3&1—|—2&2

have solution: a1 =1 a9 = 1.
= problem solution: a,, = 3" + 2"
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Example 6.2.7: Fibonacci Numbers again

fo=0 fi=1
fn — fn—l +fn—2
char eq: 7> —r — 1 = 0 has roots
1++5 1—-+/5
5 and 5

Etc. The complete solution is
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DEGREE THREE, LINEAR HOMOGENEOUS
Example 6.2.8: a, = 6a,-1 — 1la,_2 + 6a,,—_3
init conds: ag = 2,a1 = 5,a9 = 15

char eq:
O0=7r3—6r+1lr—6=(r—1)(r —2)(r — 3)
char roots:

r=1,2,3
gen sol:
a, = o1 - 1" 4+ as - 2™ + az - 3"

simult lin eq:
apg =2 =1 + oy + a3
a1 =5=oa1+as-2+a3-3
ay=15=0a1+ay-4+a3-9
coeff solns:
ap = 1, ay = —1, a3 = 2

unique sol:
ap, =1—-2"+2-3"
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NONHOMOGENEOUS LINEAR RECURRENCES

We split the solution into a homogeneous part
and a particular part.

Example 6.2.9: Tower of Hanoi, again
ho = 0 initial condition
h,, = 2h,,_1 + 1 recurrence

assoc homog relation fzn — szn_l has
homogeneous solution hy, = 2"

assoc partic relation hn = QHn_l + 1 has
particular solution h, = —1

simult lin eqn:
hon:iAzonLho:aQO—l

has solution a =1

problem solution: h, = 2™ — 1.

Remark: The form of the particular solution

usuallly resembles the function of n. In this case
g(n) =1 ,

is a constant function. So we tried h,, = K, and

we solved the equation K = 2K + 1, and obtained

K =-1.
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Example 6.2.10: a,, 3a,-1 + 2n

init cond: a1 = 3

homog soln:
a, = a3d"
partic rec rel:
&n — SCALn_l + 2n
trial soln:
a, =cn+d
Then ecn + d = 3lc(n — 1) + d] + 2n,
i.e., 0 =n(2c+2)+ (2d — 3¢)
=c=—-1,d=—-3/2
partic soln:
ap, = —n —3/2
general soln:
anp = a3 —n—3/2

simult eq:
a; = 3 = a3 —1—-3/2 = 3a — 5/2
coeft solns:
a=11/6
unique sol:
11 3

Coursenotes by Prof. Jonathan L. Gross for use with Rosen: Discrete Math and Its Applic., 5th Ed.

6.2.9



Chapter 6 ADVANCED COUNTING TECHNIQUES

REPEATED ROOTS

Example 6.2.11: A recurrence system
ag = —2 a7 = 2 initial conditions

a, = 4a,,_1 — 4a,,_o recurrence

char eq: 72 — 4r + 4 = 0 has roots 2, 2.
gen sol: a, = a12" + asn2™

CLQI—QIOél

simult lin eqns
a1 = 2 =207 + 209

have solution: a1 = —2 a9 = 3.
problem solution: a, = (—2) 2" 4+ 3 - n2"

6.2.10
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